令和2(2020)年度ウルメイワシ対馬暖流系群の資源評価

水産研究・教育機構 水産資源研究所 水産資源研究センター

参画機関:青森県産業技術センター水産総合研究所、秋田県水産振興センター、山形県水産研究所、新潟県水産海洋研究所、富山県農林水産総合技術センター水産研究所、石川県水産総合センター、福井県水産試験場、京都府農林水産技術センター海洋センター、兵庫県立農林水産技術総合センター但馬水産技術センター、鳥取県水産試験場、島根県水産技術センター、山口県水産研究センター、福岡県水産海洋技術センター、佐賀県玄海水産振興センター、長崎県総合水産試験場、熊本県水産研究センター、鹿児島県水産技術開発センター

要約

本系群の資源量について、コホート解析により計算した。資源量は、2003 年以降増加傾向を示し、2015 年には 143 千トンまで増加したが 2019 年は 87 千トンとなった。また、2019 年の親魚量 (55 千トン) は Blimit (27 千トン) を上回った。資源水準は親魚量に基づいて中位とし、資源動向は過去 5 年間 (2015~2019 年)の資源量と親魚量の推移から減少と判断した。2019 年の親魚量は Blimit を上回っているため、親魚量の維持を目標とする Fmed を管理基準として 2021 年 ABC を算定した。

管理基準	Target/ Limit	2021 年 ABC (千トン)	漁獲割合 (%)	F 値 (現状の F 値から の増減%)
	Target	23	32	0.63 (-39%)
Fmed	Limit	26	37	0.79 (-24%)

Target は、資源変動の可能性やデータ誤差に起因する評価の不確実性を考慮し、より安定的な資源の増大が期待される F 値による漁獲量である。Limit は、管理基準の下で許容される最大レベルの F 値による漁獲量である。Ftarget = α Flimit とし、係数 α には標準値 0.8 を用いた。Fmed は親魚量を維持する F、漁獲割合は 2021 年の漁獲量/資源量、F 値は各年齢の平均値である。2019 年の親魚量は55 千トン。

年	資源量 (千トン)	親魚量 (千トン)	漁獲量 (千トン)	F値	漁獲割合 (%)
2016	133	83	55	1.12	42
2017	93	61	39	1.10	42
2018	76	54	31	0.92	41
2019	87	55	35	1.04	41
2020	80	55	34	1.04	43
2021	72	49	_	_	_

2020年、2021年の値は、将来予測に基づく値。

水準:中位 動向:減少

本件資源評価に使用したデータセットは以下のとおり

	+ + + + + + + + + + + + + + + + + + +
データセット	基礎情報、関係調査等
年齢別•年別漁獲尾数	漁業・養殖業生産統計年報(農林水産省)
	主要港水揚げ量(新潟~鹿児島(14)県)
	大中型まき網漁業漁獲成績報告書(水産庁)
	月別体長組成調査(水研·京都~鹿児島(8)県)
資源量指数	
•資源量指標值	魚群分布調査「計量魚探を用いた浮魚類魚群量調査」(8~9
	月、水研)
	・計量魚群探知機、中層トロール
•産卵量	卵稚仔調査(周年、水研、青森~鹿児島(17)府県)
	・ノルパックネット
自然死亡係数(M)	年あたり M=0.7 を仮定(大下 2003、2009)

1. まえがき

我が国周辺に分布するウルメイワシは対馬暖流系群と太平洋系群から構成される。ウルメイワシ対馬暖流系群は、マイワシやカタクチイワシに比べてやや暖かい海域に分布し、その漁獲量の変動幅はマイワシに比べて小さい。

2. 生態

(1) 分布・回遊

本種は日本の沿岸域を中心に分布し、特に本州中部以南に多い(落合・田中 1986)。ウルメイワシ対馬暖流系群の漁場は、主に九州西方から山陰の沿岸に沿って帯状に形成される。一部は夏季に日本海へ、冬季に九州西岸へ回遊すると考えられる(図 1)。

(2) 年齡·成長

対馬暖流域におけるウルメイワシの成長式は次の通り (大下ほか 2011、図 2)。

$BL_m = 244.77(1 - \exp(-0.10(m - 0.55)))$

ただし、 BL_m はふ化後月数mにおける被鱗体長(mm)である。寿命は3年程度である。

(3) 成熟 • 産卵

卵・稚魚の出現状況から、本系群の産卵は九州周辺水域ではほぼ周年にわたり行われると考えられる。北方の海域ほど産卵期間は短く、青森県以南の日本海北部では春から夏にかけて産卵する(内田・道津 1958)。ウルメイワシは1歳で成熟する(図3、大下ほか 2011)。

(4) 被捕食関係

ウルメイワシはカイアシ類、十脚類幼生、端脚類などを捕食し(Tanaka et al. 2006)、大型魚類、ほ乳類、海鳥類、頭足類などに捕食される。

3. 漁業の状況

(1) 漁業の概要

主にまき網、定置網、棒受網などで漁獲される。

(2) 漁獲量の推移

本評価における漁獲量は、漁業・養殖業生産統計年報の青森県~鹿児島県の合計値に、 漁獲成績報告書より日本海区および東シナ海区以外に所属する漁船による当該海域(東シ ナ海区)における漁獲量を加えた(図 4、表 1)。これら漁船による漁獲量については 1994 年まで溯って計上した。

1976 年から 1998 年まで毎年 20 千トンを越える漁獲があった。特に 1980 年代後半から 1990 年代前半までは 40 千トンを上回る年が多くみられた。しかし、1990 年代後半から 2000 年にかけて 10 千トンまで減少した。2001 年以降は増加傾向にあり、2013 年と 2016 年には 50 千トンを超える漁獲量となった。その後漁獲量は減少し、2017 年以降は 31 千トン~39 千トンの間で変動しており、2019 年は 35 千トンだった。東シナ海区と日本海西区 における漁獲量が多い。

対馬暖流域では日本の他に韓国もウルメイワシを漁獲しており、韓国の漁獲量は、1976年から 1986年には 14 千トンを記録したが、1990年以降、報告されていない(水産統計(韓国海洋水産部)、http://www.fips.go.kr:7001/index.jsp、2020年3月)。中国によるウルメイワシ漁獲量は不明である。

4. 資源の状態

(1) 資源評価の方法

1976 年以降の月別漁獲量と体長測定資料から推定した年齢別漁獲尾数を用いたコホート解析により資源量を推定した(補足資料 1、2、3)。ウルメイワシの分布は主に沿岸に限定され、また韓国、中国の漁獲データが得られていないため、日本の漁獲データに基づき資源評価を行った。

(2) 資源量指標値の推移

日本海(1979年以降)および九州西岸(1997年以降)において実施された卵稚仔調査の結果に基づいて産卵量を算出した(図5)。日本海の産卵量は、1980年代後半から1990年代前半にかけて一度大きなピークを示したが、その後減少し、1990年代後半には低い水準となった。その後、変動しながら緩やかな増加傾向を示した。九州西岸の産卵量も近年増加傾向にあったが、2018年以降は落ち込んだ。

夏季の九州西岸域から対馬海峡において実施された計量魚探などを用いた浮魚類魚群量調査により求められたウルメイワシの現存量指標値(Ohshimo 2004、ただし 2012 年以降は再計算をおこなった)と同時に実施された中層トロール調査による CPUE(kg/網)の推移を図 6 に示した。2019 年の中層トロールの CPUE(13.8 kg/網)は、2018 年(19.5 kg/網)より減少した。CPUEと現存量指標値は一部の年を除いてほぼ同じ傾向を示しており、2016年には非常に高い値を示した。

(3) 漁獲物の年齢(体長)組成

月別の年齢-体長キーにより年齢別漁獲尾数を求めた。漁獲は $0\sim1$ 歳魚が主体であった (図 7)。

(4) 資源量と漁獲割合の推移

コホート解析により得られた結果を表 1 に、資源量と漁獲割合の推移を図 8 に示す(補足資料 3)。自然死亡係数(M)は 0.7 を仮定した(大下 2003、2009)。資源量は、1970 年代後半から 1980 年代半ばにかけて減少し、1980 年代後半から 1990 年代前半にかけて増加した。その後、2000 年代前半まで再び減少したが、2003 年以降、増加傾向にある。2019 年の資源量は、前年 76 千トンより増加し、87 千トンと推定された。

漁獲割合は、1984年の59%を境に1990年の37%まで減少したものの、その後は増減を繰り返し、2019年は41%であった(図8)。漁獲割合は、資源量減少期にやや高くなる傾向がある。Mを0.5から0.8の間で0.1刻みに変えたときの2019年の資源量、親魚量、加入量の推定値を図9に示した。M=0.5を仮定した際の資源量は、M=0.7を仮定した際の82%となった。M=0.8を仮定すると、112%となった。

(5) 再生產関係

図 10 に再生産関係を示した。親魚量と加入量との間には正の相関が認められたが、親魚量が多くなると加入量は頭打ちになる傾向が認められた。なお、図 10 には将来予測に際して仮定した再生産関係について破線で示した((8) 今後の加入量の見積もりを参照)。

(6) Blimit の設定

資源回復の閾値となる Blimit は、低い親魚量でも高い加入がみられた 1984 年の親魚量 (27 + F) とした (図 10)。 2019 年の親魚量は 55 + F とであり、Blimit を上回っている。

(7) 資源の水準・動向

資源水準の「低位」と「中位」の境界を Blimit と同一の 27 千トンとした (図 10、11)。 一方、「中位」と「高位」の境界は、親魚量の最小値と最大値の範囲を三等分した値のうち、 上位 3 分の 1 である 89 千トンとした (図 10、11)。2015 年には、親魚量は高位に達した が、その後減少し、2019 年は 55 千トンであったことから、2019 年の資源の水準を中位と 判断した。資源の動向は、過去 5 年間 (2015~2019 年) の資源量と親魚量の推移から減少 と判断した (図 8)。

(8) 今後の加入量の見積もり

親魚量と加入量の経年変化を図 11 に示した。親魚量は 1970 年代後半に高い水準にあったが、1990 年代後半に減少し、2000~2002 年には最低水準で推移した。2003 年以降、本系群の資源量は増加傾向となり、2015 年に高位水準に達した後、減少傾向となった。加入量も親魚量に先がけて 1998~2000 年には最低水準で推移した後、変動しながら 2012 年まで増加傾向にあったが、2013 年以降は減少傾向にある。

再生産成功率 (RPS) の経年変化を図 12 に示した。RPS は 1980 年代半ばから 1990 年代 にかけて 100 尾/kg を超えた年もあったが、2000 年代に入ってからは 23~87 尾/kg の間で大きく変動している。2015 年以降は 24~34 尾/kg の間で変化しており、比較的安定している。

今後の加入量は RPS と親魚量の積から算定した。将来予測における RPS は不確実性の高い直近年(2019年)を除く過去 5年間(2014~2018年)における中央値(28.3尾/kg)とした。また、加入量の上限は、中位と高位の境目となる親魚量 89千トンに RPS を乗じた値(25億尾)とした。この条件に基づく再生産関係を図 10に破線にて示した。

(9) 生物学的管理基準(漁獲係数)と現状の漁獲圧の関係

資源量が少ないときには漁獲係数 (F) が高くなる傾向が認められた (図 13)。また、経年的にみると、資源量が減少した 1980 年代半ばに高く 1990 年代前半に低くなった。1990 年代後半から 2000 年代前半にかけては、2000 年を除いて 1.0 よりも高い値で増減したが 2000 年代後半以降は 1.0 前後で増減を繰り返した (図 14)。

FとYPR および%SPR の関係を図 15 に示した。2019 年の F(1.04) は Fmed(0.79) より高く、F40%SPR(1.28) よりも低い。

5. 2021 年 ABC の算定

(1) 資源評価のまとめ

2019年の親魚量は55千トンであり、Blimitを上回っているため、2019年における資源 水準は中位と判断した。また、資源量と親魚量の推移から資源動向を減少と判断した。

(2) ABC の算定

ABC を算定するにあたっては、2019年の親魚量が Blimit を上回っていることから、ABC 算定規則の 1-1) - (1) を用い、親魚量の維持を図ることを管理目標として、2021年の ABC を算出した。本評価では、親魚量を維持する Fmed を管理基準とし、2021年 ABC を算定

した。Fmed は、年齢別選択率が $2016\sim2018$ 年の平均で、 $2004\sim2018$ 年再生産関係の中央値に相当する F(0 歳=0.24、1 歳=1.07、2 歳=1.07)とした。

ABC 算定に際し、2020 年の F は Fcurrent(2019 年における F、1.04)とし、係数 α には標準値 0.8 を用いた。2020 年以降の年齢別体重は、直近年を含む近年 3 年間(2017~2019年)の平均値とした。

管理基準	Target/ Limit	2021 年 ABC (千トン)	漁獲割合 (%)	F 値 (現状の F 値から の増減%)
	Target	23	32	0.63 (-39%)
Fmed	Limit	26	37	0.79 (-24%)

Target は、資源変動の可能性やデータ誤差に起因する評価の不確実性を考慮し、より安定的な資源の増大が期待される F 値による漁獲量である。Limit は、管理基準の下で許容される最大レベルの F 値による漁獲量である。Ftarget = α Flimit とし、係数 α には標準値 0.8 を用いた。漁獲割合は、漁獲量÷資源量である。F 値は各年齢の平均である。

(3) ABC の評価

図 16 および下表に 2021 年以降の F を Fcurrent (F2019)、および Fmed とした場合の資源量、漁獲量、親魚量について示した。 Fmed の値は Fcurrent に 0.76 を乗じた値に等しい。 Fmed で漁獲した場合には親魚量は Blimit (27 千トン) 以上で維持される。一方、Fcurrent の下で管理した場合には資源量および親魚量は 2021 年以降単調減少する。

管理基準		E 荷	漁獲量(千トン)								
1 日		F 値	2019	2020	2021	2022	2023	2024	2025	2026	
親魚量の維持	Target	0.63	35	34	23	25	27	30	32	35	
(Fmed)	Limit	0.79	35	34	26	26	26	26	26	26	
現状の漁獲圧の	Target	0.84	35	34	27	27	26	25	25	24	
維持(Fcurrent)	Limit	1.04	35	34	31	27	24	21	18	16	
			資源量	』(千トン	′)						
			2019	2020	2021	2022	2023	2024	2025	2026	
親魚量の維持	Target	0.63	87	80	72	79	86	93	101	110	
(Fmed)	Limit	0.79	87	80	72	72	72	72	72	72	
現状の漁獲圧の	Target	0.84	87	80	72	70	69	67	66	64	
維持(Fcurrent)	Limit	1.04	87	80	72	63	55	49	43	38	
			親魚量	』(千トン	′)						
			2019	2020	2021	2022	2023	2024	2025	2026	
親魚量の維持	Target	0.63	55	55	49	55	59	64	70	76	
(Fmed)	Limit	0.79	55	55	49	50	50	50	50	50	
現状の漁獲圧の	Target	0.84	55	55	49	49	47	46	45	44	
維持(Fcurrent)	Limit	1.04	55	55	49	43	38	34	30	26	

(4) ABC の再評価

昨年度評価以降追加されたデータセット	修正・更新された数値
2018 年漁獲量	2018 年年齢別漁獲尾数
2019 年漁獲量	2019 年年齢別漁獲尾数
2019 年年齢別体重	再生産関係、%SPR

評価対象年 (当初・再評価)	管理 基準	F 値	資源量 (千トン)	ABClimit (千トン)	ABCtarget (千トン)	漁獲量 (千トン) (実際の F 値)
2019年(当初)	Fmed	0.90	88	33	29	
2019 年(2019 年 再評価)	Fmed	0.73	91	31	27	
2019 年(2020 年 再評価)	Fmed	0.82	87	32	28	35 (1.04)
2020年(当初)	Fmed	0.73	81	27	24	
2020 年(2020 年 再評価)	Fmed	0.82	80	31	27	

2019 年(2020 年再評価)および 2020 年(2020 年再評価)の資源量は 2019 年再評価値に 比べると若干減少したが、ABC は増加した。これは新たな情報が加わり、参照する再生産 成功率が増加し、Fmed の値が大きくなったためである。

6. ABC 以外の管理方策の提言

本種は寿命が短く、漁獲物の大半は $0\sim1$ 歳魚である。親魚量と加入量には正の相関が見られるので、資源を安定して利用するためには、親魚量を一定以上に保つことが有効である。そのため、加入が少ないと判断された場合には、0 歳魚を獲り控えるなどの方策が効果的だと考えられる。

7. 引用文献

落合 明・田中 克 (1986) 「新版魚類学 (下)」. 恒星社厚生閣, 東京, 1140 pp.

大下誠二 (2003) 平成 14 年度ウルメイワシ対馬暖流系群の資源評価, 我が国周辺水域の漁業資源評価 (平成 14 年度), 水産庁・水産総合研究センター, 789-802.

Ohshimo, S. (2004) Spatial distribution and biomass of pelagic fish in the East China Sea in summer, based on acoustic surveys from 1997 to 2001. Fish. Sci., **70**, 389-400.

大下誠二 (2009) 平成 20 年度ウルメイワシ対馬暖流系群の資源評価, 我が国周辺水域の漁業資源評価 (平成 20 年度), 水産庁・水産総合研究センター, 659-674.

大下誠二・後藤常夫・大塚 徹・槐島光次郎 (2011) 東シナ海におけるウルメイワシの年 齢・成長と成熟特性. 日水誌, 77, 15-22.

Tanaka, H., I. Aoki and S. Ohshimo (2006) Feeding habits and gill raker morphology of three planktivorous pelagic fish species off the coast of northern and western Kyushu in summer. J.

Fish Biol., **68**, 1041-1061.

- 内田恵太郎・道津善衛 (1958) 第1篇 対馬暖流域の表層に現れる魚卵・稚魚概説. 対馬暖流開発調査報告書, 第2輯, 水産庁, 3-65.
- 銭谷 弘・石田 実・小西芳信・後藤常夫・渡邊良朗・木村 量 (編)(1995) 日本周辺水域 におけるマイワシ、カタクチイワシ、サバ類、ウルメイワシ、およびマアジの卵仔魚 とスルメイカ幼生の月別分布状況: 1991 年 1 月~1993 年 12 月. 水産庁研究所資源管理報告 A, 1, 368 pp.

(執筆者:依田真里、黒田啓行、髙橋素光)

図1. ウルメイワシ対馬暖流系群の分布図

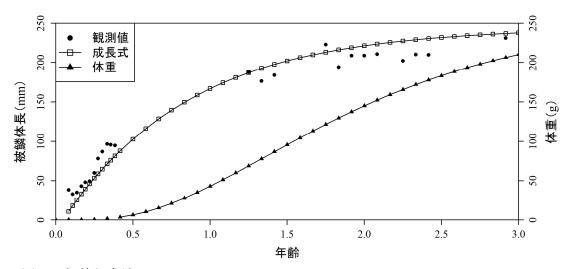


図2. 年齢と成長

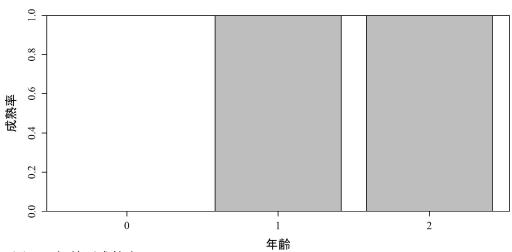


図 3. 年齢別成熟率

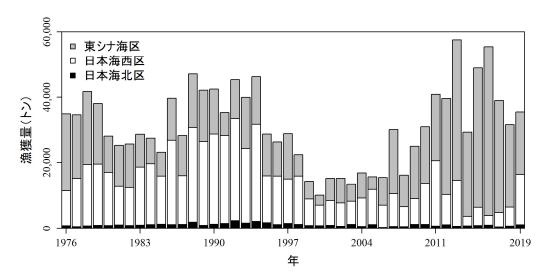


図4. ウルメイワシの漁獲量

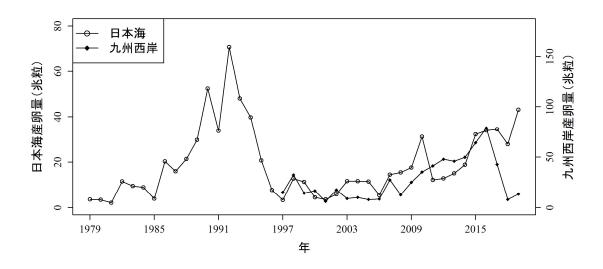


図 5. 産卵量の経年変化

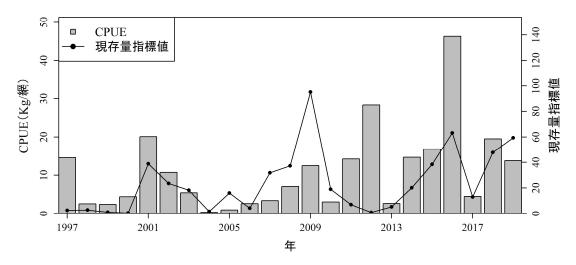


図 6. 計量魚探・中層トロール調査結果

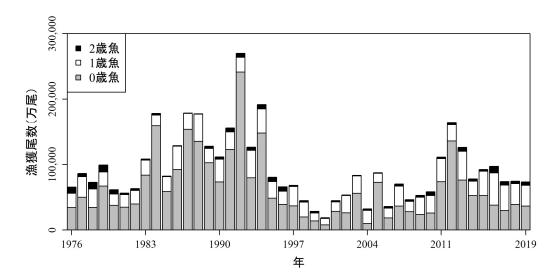


図 7. 年齡別漁獲尾数

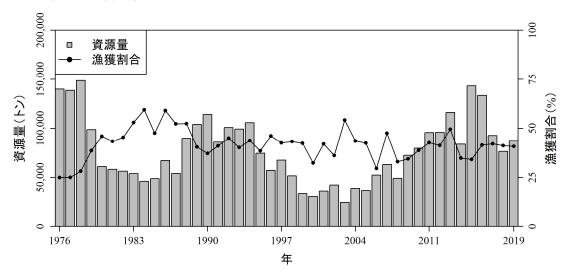


図 8. 推定された資源量と漁獲割合

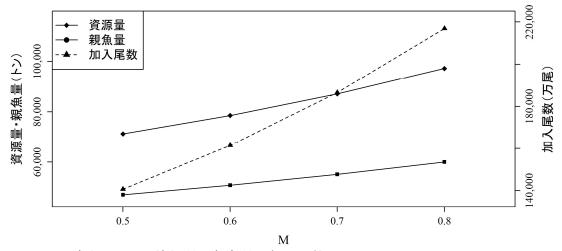


図 9. M を変えたときの資源量、親魚量、加入尾数

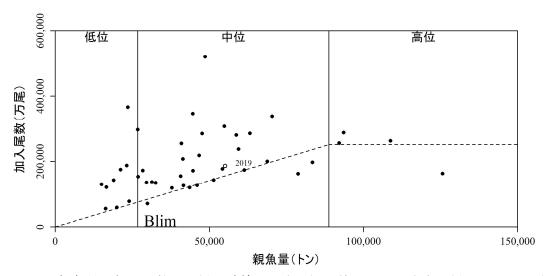


図 10. 親魚量と加入尾数の関係 破線:将来予測に使用した再生産関係。〇:2019 年の プロット

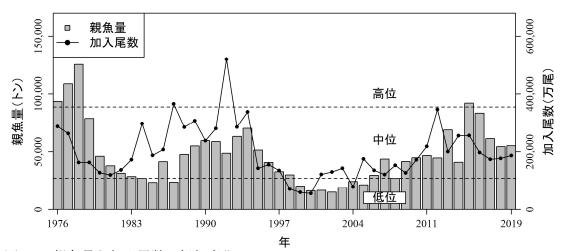
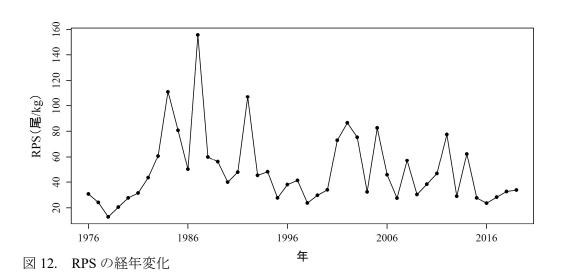



図11. 親魚量と加入尾数の経年変化

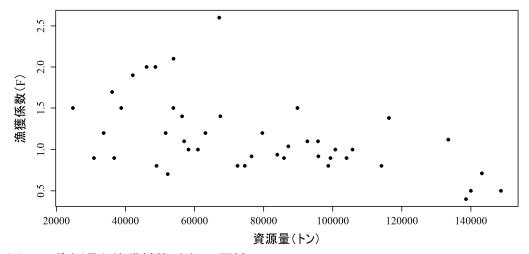
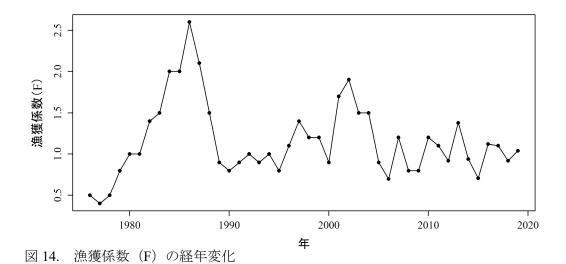



図 13. 資源量と漁獲係数(F)の関係

100 25 Fcurrent F0.1 80 20 Fmed 09 %SPR 40 F50% SPR F40% SPR 20 F30% SPR 0 0.5 0.0 1.0 1.5 2.0 漁獲係数(F)

図 15. 漁獲係数 (F) と%SPR (実線) および YPR (破線) の関係

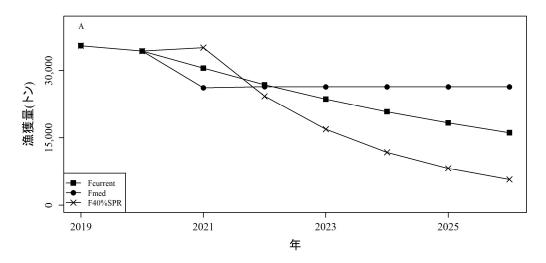


図 16A. 各 F に対応する漁獲量

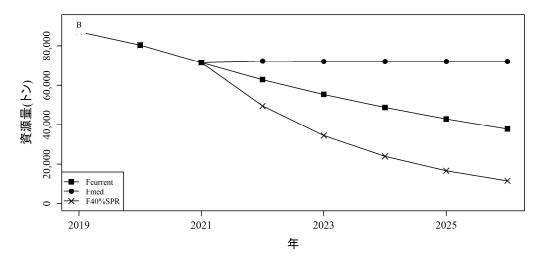
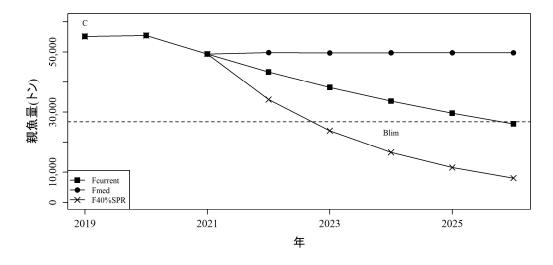


図 16B. 各Fに対応する資源量



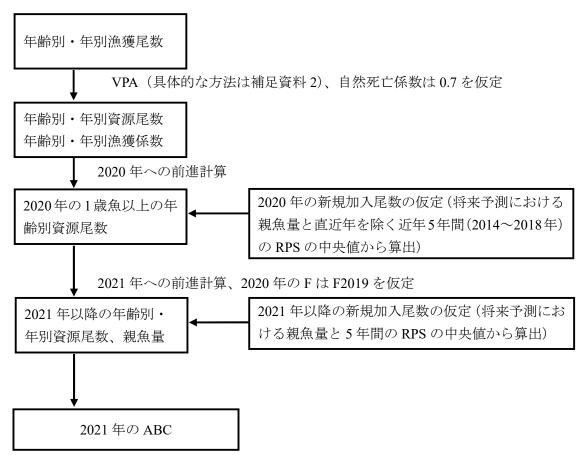

図 16C. 各 F に対応する親魚量

表 1. ウルメイワシ対馬暖流系群の漁獲量(トン)

年	東シナ海区	日本海西区	日本海北区	合計	韓国
1976	23,586	10,614	718	34,918	2,869
1977	19,516	14,671	428	34,615	6,227
1978	22,369	18,693	675	41,737	9,607
1979	18,586	18,671	828	38,085	4,212
1980	10,975	16,235	782	27,992	5,102
1981	12,585	11,698	949	25,232	4,244
1982	13,268	11,535	802	25,605	5,625
1983	9,949	17,699	910	28,558	10,606
1984	7,745	18,551	1,088	27,384	10,829
1985	7,244	14,684	1,186	23,114	8,994
1986	12,897	25,713	1,042	39,652	14,033
1987	12,244	14,826	1,115	28,185	10,300
1988	16,421	28,863	1,794	47,078	10,693
1989	15,789	25,488	854	42,131	7,280
1990	13,798	27,431	1,211	42,440	4,205
1991	7,152	26,755	1,420	35,327	4,463
1992	11,816	31,200	2,266	45,282	3,597
1993	15,709	22,671	1,548	39,928	24,383
1994	14,640	29,546	2,045	46,231	23,974
1995	12,770	14,222	1,668	28,660	18,345
1996	10,401	14,803	1,052	26,256	10,663
1997	13,799	13,518	1,421	28,738	5,593
1998	6,505	14,710	1,125	22,340	1,974
1999	5,416	8,068	780	14,264	6,674
2000	3,006	6,244	700	9,950	4,603
2001	6,769	7,520	863	15,152	766
2002	7,535	7,063	580	15,178	788
2003	5,232	7,064	1,101	13,397	885
2004	7,740	8,621	487	16,848	755
2005	3,876	10,638	1,083	15,597	_
2006	8,453	6,739	229	15,421	_
2007	19,544	9,952	499	29,995	_
2008	9,685	6,036	441	16,162	_
2009	15,980	7,813	1,146	24,939	_
2010	17,278	12,486	1,114	30,878	_
2011	20,290	19,914	631	40,835	0
2012	29,401	9,174	1,030	39,605	_
2013	42,973	14,007	540	57,520	_
2014	25,641	2,887	670	29,198	_
2015	42,558	5,551	774	48,883	_
2016	51,631	2,865	917	55,413	_
2017	34,254	4,339	367	38,960	_
2017	25,082	5,782	615	31,479	_
2019	19,151	15,320	1,028	35,499	_

2019年の日本の漁獲量は暫定値。

補足資料 1 資源評価の流れ

補足資料 2 資源計算

年齢別漁獲尾数をもとにコホート解析を行なった。なお、ウルメイワシの寿命は3年として計算した。計算方法は次のとおりである。

式1により2018年以前の0、1歳魚の年齢別年別資源尾数を計算した。

$$N_{a,y} = N_{a+1,y+1} \times \exp\left(M\right) + C_{a,y} \times \exp\left(\frac{M}{2}\right) \tag{± 1}$$

ここで、 $N_{a,y}$ はy年におけるa歳魚の資源尾数、 $C_{a,y}$ はy年a歳魚の漁獲尾数、Mは自然死亡係数 (0.7) である。ただし、最高齢 (2歳) および最近年 (2019年) の各年齢の資源尾数については次式により計算した。

$$N_{a,y} = \frac{C_{a,y} \times \exp\left(\frac{M}{2}\right)}{\left\{1 - \exp\left(-F_{a,y}\right)\right\}} \tag{\ddagger 2}$$

Fは漁獲係数であり、最高齢および最近年以外は以下の式で計算される。

$$F_{a,y} = -\ln \left\{ 1 - \frac{C_{a,y} \times \exp\left(\frac{M}{2}\right)}{N_{a,y}} \right\} \tag{\vec{x}} 3)$$

2018 年以前の 2 歳魚の F は、1 歳魚の F と同じと仮定して計算した。また、2019 年の 0 歳 魚と 1 歳魚の F は 2016 年から 2018 年の同歳魚の F の平均値として計算し、式 1 を用いて 資源尾数を計算した。2019 年の 1 歳魚と 2 歳魚の F が同一とした。

また、2020 年以降の将来予測について、1 歳魚、2 歳魚の資源尾数は次の式を用いて前 進法により推定した。

$$N_{a+1,y+1} = N_{a,y} \exp(-F_{a,y} - M)$$
 (式 4)

0 歳魚の資源尾数は、各年の親魚量と設定した再生産成功率により算出した。 2020 年以降の年齢別の漁獲尾数は次の式を用いて推定した。

$$C_{a,y} = N_{a,y} \left(1 - \exp\left(-F_{a,y}\right) \right) \times \exp\left(-\frac{M}{2}\right)$$
(\$\frac{1}{2}\$)

補足資料3 コホート解析の結果の詳細

年齢		尾数(万)		漁獲重量(トン)			平均体重(g)		
年\	0歳	1歳	2 歳	0歳	0歳 1歳 2歳		0歳		
1976	33,754	21,925	9,296	5,442	17,771	11,706	16	81	126
1977	49,638	31,779	5,095	5,632	22,557	6,427	11	71	126
1978	34,113	28,098	10,813	4,818	23,872	13,047	14	85	121
1979	67,230	21,596	10,497	8,225	15,796	14,063	12	73	134
1980	37,217	17,119	6,714	4,356	14,950	8,687	12	87	129
1981	34,541	18,933	2,296	5,884	16,320	3,028	17	86	132
1982	39,356	20,505	2,964	7,179	14,294	4,133	18	70	139
1983	83,715	22,932	1,656	12,354	14,034	2,170	15	61	131
1984	158,879	16,960	2,422	10,315	14,343	2,727	6	85	113
1985	58,123	23,448	824	7,887	14,260	967	14	61	117
1986	92,433	35,483	826	11,471	27,153	1,028	12	77	124
1987	153,413	24,884	577	12,715	14,779	691	8	59	120
1988	135,083	42,012	723	19,941	26,209	928	15	62	128
1989	102,529	21,833	3,292	16,379	21,635	4,117	16	99	125
1990	73,529	34,560	3,320	16,864	21,904	3,672	23	63	111
1991	122,892	26,498	6,201	11,900	16,475	6,951	10	62	112
1992	241,214	22,901	6,225	24,131	14,282	6,868	10	62	110
1993	79,828	41,792	4,730	10,098	24,426	5,404	13	58	114
1994	147,730	37,516	6,347	15,436	23,845	6,950	10	64	109
1995	48,137	25,912	6,556	7,770	13,425	7,466	16	52	114
1996	38,649	20,200	7,325	4,058	12,605	9,593	11	62	131
1997	36,339	29,525	2,465	9,405	15,858	3,475	26	54	141
1998	19,628	22,565	2,130	5,984	13,249	3,107	30	59	146
1999	13,711	11,927	2,565	3,159	7,349	3,755	23	62	146
2000	7,645	9,658	1,092	1,989	6,326	1,635	26	66	150
2001	28,124	14,239	1,954	4,503	7,688	2,961	16	54	152
2002	25,794	26,429	656	5,370	9,059	749	21	34	114
2003	55,461	27,331	865	2,243	10,213	942	4	37	109
2004	9,592	19,919	2,374	1,816	11,676	3,357	19	59	141
2005	72,944	13,753	752	6,465	8,193	939	9	60	125
2006	18,316	14,848	2,569	3,054	8,746	3,621	17	59	141
2007	36,278	30,068	3,975	5,876	18,673	5,445	16	62	137
2008	27,655	15,541	2,628	3,981	8,583	3,599	14	55	137
2009	23,268	26,259	2,812	5,667	15,405	3,866	24	59	137
2010	25,618	26,661	5,539	5,197	18,019	7,662	20	68	138
2011	73,980	34,930	2,210	16,619	21,671	2,545	22	62	115
2012	135,899	24,588	3,857	20,074	14,432	5,099	15	59	132
2013	76,479	43,639	6,066	18,131	30,670	8,720	24	70	144
2014	52,013	22,693	3,545	8,767	15,232	5,199	17	67	147
2015	52,159	37,604	2,751	10,409	34,576	3,898	20	92	142
2016	37,563	49,660	10,008	9,528	33,263	12,622	25	67	126
2017	29,434	39,194	5,405	5,306	27,023	6,631	18	69	123
2018	38,796	32,145	3,849	4,862	21,135	5,482	13	66	142
2019	36,059	32,282	5,258	6,181	22,130	7,188	17	69	137

補足資料 3 コホート解析の結果の詳細(つづき)

年齢	漁	獲係数]		資源尾数 (万尾)		資源量(トン)			
年\	0 歳	1歳	2歳	0 歳	1歳	2歳	0 歳	1歳	2 歳
1976	0.18	0.59	0.59	287,970	69,601	29,509	46,424	56,413	37,159
1977	0.31	0.48	0.48	263,044	119,215	19,112	29,844	84,619	24,109
1978	0.35	0.54	0.54	163,148	95,645	36,806	23,040	81,259	44,412
1979	0.88	0.77	0.77	162,538	56,978	27,695	19,885	41,677	37,104
1980	0.54	1.30	1.30	127,399	33,338	13,076	14,910	29,114	16,917
1981	0.53	1.29	1.29	119,384	37,038	4,492	20,337	31,928	5,923
1982	0.52	1.79	1.79	136,787	34,944	5,051	24,950	24,359	7,043
1983	1.17	1.66	1.66	172,352	40,192	2,903	25,434	24,597	3,804
1984	1.42	2.35	2.35	297,385	26,595	3,799	19,307	22,491	4,276
1985	0.58	2.68	2.68	187,439	35,717	1,255	25,434	21,721	1,473
1986	1.00	3.38	3.38	207,426	52,120	1,213	25,741	39,885	1,510
1987	0.90	2.70	2.70	366,208	37,868	878	30,350	22,491	1,052
1988	1.11	1.65	1.65	285,387	73,745	1,269	42,129	46,005	1,630
1989	0.64	1.10	1.10	307,303	46,528	7,015	49,093	46,105	8,773
1990	0.58	0.94	0.94	238,126	80,351	7,719	54,613	50,927	8,538
1991	0.97	0.83	0.83	280,458	66,435	15,547	27,158	41,306	17,428
1992	1.07	0.96	0.96	520,556	52,671	14,318	52,076	32,849	15,797
1993	0.50	1.11	1.11	285,954	88,519	10,018	36,171	51,736	11,447
1994	0.97	0.97	0.97	338,137	85,747	14,507	35,332	54,501	15,885
1995	0.65	0.86	0.86	142,875	63,810	16,144	23,061	33,058	18,385
1996	0.44	1.49	1.49	155,033	37,028	13,427	16,278	23,106	17,584
1997	0.48	1.85	1.85	134,751	49,751	4,153	34,874	26,721	5,856
1998	0.50	1.49	1.49	71,039	41,308	3,900	21,658	24,253	5,688
1999	0.40	1.56	1.56	59,428	21,446	4,612	13,694	13,215	6,753
2000	0.22	1.17	1.17	55,615	19,849	2,245	14,469	13,002	3,360
2001	0.40	2.40	2.40	121,392	22,230	3,051	19,438	12,003	4,623
2002	0.33	2.62	2.62	130,066	40,463	1,005	27,080	13,869	1,147
2003	0.80	1.81	1.81	142,696	46,412	1,469	5,770	17,343	1,599
2004	0.19	2.20	2.20	77,851	31,778	3,788	14,736	18,627	5,356
2005	0.89	0.95	0.95	175,077	31,900	1,744	15,517	19,005	2,177
2006	0.21	0.90	0.90	135,422	35,538	6,150	22,580	20,934	8,666
2007	0.56	1.54	1.54	120,506	54,342	7,184	19,519	33,748	9,840
2008	0.30	1.03	1.03	153,382	34,277	5,796	22,078	18,931	7,937
2009	0.30	1.07	1.07	126,479	56,679	6,070	30,807	33,252	8,345
2010	0.24	1.69	1.69	171,936	46,411	9,642	34,880	31,368	13,337
2011	0.66	1.33	1.33	218,212	67,328	4,260	49,019	41,773	4,905
2012	0.81	0.97	0.97	346,353	56,228	8,820	51,161	33,004	11,660
2013	0.78	1.67	1.67	200,078	76,228	10,595	47,431	53,573	15,232
2014	0.34	1.23	1.23	255,069	45,462	7,101	42,991	30,515	10,415
2015	0.34	0.90	0.90	255,866	90,011	6,584	51,062	82,762	9,331
2016	0.32	1.52	1.52	197,121	90,303	18,199	50,000	60,487	22,951
2017	0.28	1.51	1.51	173,717	71,417	9,848	31,318	49,240	12,082
2018	0.37	1.19	1.19	177,287	65,524	7,845	22,218	43,080	11,175
2019	0.32	1.41	1.41	186,500	60,699	9,886	31,967	41,611	13,515

補足資料3 コホート解析の結果の詳細(つづき)

年	資源量 (トン)	親魚量 (トン)	加入量 (万尾)	再生産成功率 (尾/kg)	漁獲割合 (%)
1976	139,996	93,572	287,970	30.78	25
1977	138,573	108,728	263,044	24.19	25
1978	148,711	125,671	163,148	12.98	28
1979	98,666	78,781	162,538	20.63	39
1980	60,941	46,031	127,399	27.68	46
1981	58,188	37,851	119,384	31.54	43
1982	56,352	31,402	136,787	43.56	45
1983	53,834	28,400	172,352	60.69	53
1984	46,073	26,767	297,385	111.10	59
1985	48,628	23,194	187,439	80.81	48
1986	67,136	41,395	207,426	50.11	59
1987	53,893	23,543	366,208	155.55	52
1988	89,763	47,635	285,387	59.91	52
1989	103,970	54,878	307,303	56.00	41
1990	114,078	59,465	238,126	40.04	37
1991	85,892	58,734	280,458	47.75	41
1992	100,723	48,647	520,556	107.01	45
1993	99,355	63,183	285,954	45.26	40
1994	105,718	70,386	338,137	48.04	44
1995	74,504	51,443	142,875	27.77	38
1996	56,969	40,690	155,033	38.10	46
1997	67,452	32,578	134,751	41.36	43
1998	51,600	29,942	71,039	23.73	43
1999	33,661	19,967	59,428	29.76	42
2000	30,830	16,361	55,615	33.99	32
2001	36,063	16,625	121,392	73.02	42
2002	42,097	15,017	130,066	86.61	36
2003	24,713	18,942	142,696	75.33	54
2004	38,719	23,983	77,851	32.46	44
2005	36,699	21,182	175,077	82.65	42
2006	52,180	29,599	135,422	45.75	30
2007	63,107	43,588	120,506	27.65	48
2008	48,946	26,868	153,382	57.09	33
2009	72,404	41,597	126,479	30.41	34
2010	79,585	44,705	171,936	38.46	39
2011	95,696	46,678	218,212	46.75	43
2012	95,825	44,664	346,353	77.55	41
2013	116,236	68,804	200,078	29.08	49
2014	83,921	40,930	255,069	62.32	35
2015	143,155	92,093	255,866	27.78	34
2016	133,438	83,438	197,121	23.62	42
2017	92,641	61,322	173,717	28.33	42
2018	76,473	54,255	177,287	32.68	41
2019	87,093	55,127	186,500	33.83	41