令和2(2020)年度ムロアジ類(東シナ海)の資源評価

水産研究・教育機構 水産資源研究所 水産資源研究センター

参画機関:長崎県総合水産試験場、熊本県水産研究センター、鹿児島県水産技術開発セン ター

要約

本資源の資源状態を、大中型まき網漁業の資源密度指数に基づいて評価した。ムロアジ類は複数種を含めた総称であり、マルアジを除いて、個々の種について資源状態を判断するためのデータは乏しい状況にある。2019年の我が国におけるムロアジ類の漁獲量は46百トンで、大中型まき網漁業によるものが39%を占める。本報告では、大中型まき網漁業のマルアジおよびその他ムロアジ類の資源密度指数の相乗平均値を資源量指標値とした。マルアジの資源密度指数は、増減を繰り返しながら長期的に減少傾向を示した。マルアジを除くその他ムロアジ類の資源密度指数は、長期的に漸減傾向にある。本資源の資源量指標値は、1990年代後半から低い水準で推移しており、最近5年間では横ばいである。以上より、資源水準は低位、動向は横ばいと判断した。資源量指標値の水準と変動傾向に合わせて漁獲することを管理方策とし、ABC 算定規則2-1)に基づいて2021年ABCを算定した。

管理基準	Target/	2021年ABC	漁獲割合	F 値
日生孟中	Limit	(百トン)	(%)	Г 川 <u>브</u>
0.9 (2010 0.99	Target	26	_	_
0.8·C2019·0.88	Limit	32	_	_

Limit は、管理基準の下で許容される最大レベルの漁獲量である。Target は、資源変動の可能性やデータ誤差に起因する評価の不確実性を考慮し、より安定的な資源の増大または維持が期待される漁獲量である。ABCtarget = α ABClimit とし、係数 α には標準値 0.8 を用いた。ABC は東シナ海区と日本海区の合計である。

年	資源量 (百トン)	親魚量 (百トン)	漁獲量(百トン)	F値	漁獲割合 (%)
2015	_	_	52	_	_
2016	_	_	74	_	_
2017	_	_	58	_	_
2018	_	_	77	_	_
2019	_	_	46	_	_

漁獲量は、東シナ海区と日本海区の合計である。2019年の漁獲量は暫定値。

水準:低位 動向:横ばい

本件資源評価に使用したデータセットは以下のとおり

データセット	基礎情報、関係調査等
漁場別漁獲動向	漁業·養殖業生産統計年報(農林水産省)
	大中型まき網漁業漁獲成績報告書(水産庁)
	主要港水揚げ量(鹿児島県)
	月別体長組成調査(水研、鹿児島県、熊本県、長崎県)
	•市場測定
資源量指数	大中型まき網漁業漁獲成績報告書(水産庁)
	主要港水揚げ量・努力量(鹿児島県)

1. まえがき

東シナ海で漁獲されるムロアジ類は主にマルアジ、ムロアジ、モロ、クサヤモロ、オアカムロ、アカアジの6種である。本資源は主に大中型まき網漁業および中・小型まき網漁業によって漁獲されている。

2. 生態

(1) 分布・回遊

東シナ海におけるムロアジ類の分布模式図を図1に示す。マルアジについては、東シナ海に主要な漁場が2つあるとされ、1つは中国大陸の沿岸域、もう1つは五島列島を中心とした九州の西岸域である(岸田 1972)。岸田(1972)は、この2群の外部形態が異なることから異質の集団であるとし、それぞれ東シナ海西部群、九州西岸群として報告している。水産庁調査研究部(1973)によると、九州沿岸に生息するマルアジは、山口県沿岸域から五島近海にかけて分布し、その一部は冬期に東シナ海中央部まで南下する。東シナ海に生息するマルアジは、揚子江の河口沖合域から台湾海峡にかけて分布し、初夏に上海の東方120海里付近を中心として集群し、10月頃までこの海域にとどまる。魚群は11月になると急速に南下し始め、12月には台湾海峡付近に達する。冬から春にかけての魚群の分布は分かっていない。岸田(1978)によると、マルアジの稚仔魚は、5月ごろ揚子江の河口沖合からそれ以南の水域に広く出現し、北上しながら7月には北緯30度以北の水域に至るものと推定されている。

ムロアジ類の魚種別の分布については、岸田(1974)が以下のように報告している。マルアジが沿岸水の影響の強い水域に分布するのに対して、その他の5種は沖合水域に生息する。モロの主要分布域は東シナ海の大陸棚縁辺部付近であるが、沿岸水の影響の強い水域でも漁獲されることがある。また、アカアジとオアカムロは、主に北緯30度以南の大陸棚縁辺部200m等深線の内側沿いに分布し、沿岸水域には出現しない。ムロアジとクサヤモロは、暖流の影響を強く受ける島または礁の周辺に分布する。

(2) 年齢·成長

マルアジは 1 歳で尾叉長 20 cm、2 歳で 26 cm、3 歳で 29 cm 前後に成長し(図 2)、観察

した標本のうち、最高齢のものは 6 歳と推定されている(Ohshimo et al. 2006)。クサヤモロは 1 歳で尾叉長 20 cm、2 歳で 25 cm、3 歳で 30 cm 前後に(図 3)、モロは 1 歳で尾叉長 19 cm、2 歳で 25 cm、3 歳で 28 cm 前後に成長し(図 4)、観察された個体のうち最高齢のものはクサヤモロで 8 歳を超え、モロでは 5 歳と推定されている(Shiraishi et al. 2010)。オアカムロは 1 歳で尾叉長 22 cm、2 歳で 29 cm、3 歳で 33 cm 前後に(図 5)、アカアジは 1 歳で尾叉長 19 cm、2 歳で 23 cm、3 歳で 26 cm 前後に成長し(図 6)、観察された個体のうち最高齢のものはオアカムロで 7 歳(Ohshimo et al. 2014)、アカアジで 10 歳と推定されている(白石ほか 2010)。

(3) 成熟·産卵

マルアジの産卵期は 4~8 月で 6 月が産卵盛期、最小成熟個体は尾叉長 24 cm の 2 歳魚である (Ohshimo et al. 2006)。モロの産卵期は 5~8 月であり、最小成熟個体は尾叉長 23 cm の 2 歳魚である (Shiraishi et al. 2010)。クサヤモロの産卵期は 4~7 月であり、最小成熟個体は尾叉長 25 cm の 2 歳魚である (Shiraishi et al. 2010)。その他のムロアジ類の産卵生態の情報は少ない。アカアジは東シナ海南部海域あるいはさらに南方の水域で、少なくとも 6 月と 7 月には産卵するものと推定されている (岸田 1978、白石ほか 2010)。オアカムロの産卵は、東シナ海の南部以南において夏季を中心に行われる(岸田 1978、Ohshimo et al. 2014)。ムロアジについては、夏期に産卵する可能性が高いと考えられているが、詳細は不明である。

(4) 被捕食関係

ムロアジ類の食性に関する詳細は、いずれの種においても明らかでない。マルアジでは、 稚魚期にカイアシ類や枝角類を、成魚ではカイアシ類、オキアミ類、小型魚類を食べると 考えられる。捕食者は大型魚類や哺乳類などと考えられる。

3. 漁業の状況

(1) 漁業の概要

ムロアジ類は、主に大中型まき網漁業および中・小型まき網漁業によって漁獲される。 大中型まき網漁業では、漁獲成績報告書の中で「マルアジ」とマルアジを除くその他の「ムロアジ類」とに分けて報告されている。我が国のムロアジ類漁獲量に対する大中型まき網漁業の割合は年々減少する傾向にあり、1970~1980年代には70%以上を占めていたが2019年には39%となった。一方、中・小型まき網漁業による漁獲が我が国のムロアジ類漁獲量に占める割合は、1970~1980年代には15%以下であったが、2000年代には30~40%で推移した後、2010年代には25~66%で増加傾向にある。ムロアジ類の漁獲量を県別でみると、長崎県と鹿児島県の漁獲量が多い。

(2) 漁獲量の推移

東シナ海区(福岡県~鹿児島県)、日本海西区(山口県~福井県)および日本海北区(石川県~青森県)の各海区に分けたムロアジ類漁獲量を図7と表1に示した。最も漁獲量が多いのは東シナ海区であり、ついで日本海西区である。東シナ海区の漁獲量は、1978年の

77 千トンをピークに一度減少したものの、1984年には75 千トンを超えた。その後、再び減少を続け、2000年には10 千トンを下回った。以後、9 千トン前後で増加減少を繰り返しており、2019年は過去最低の4,262 トンであった。日本海西区は、1970年代後半には6千トンを超える漁獲があったが、1990年代半ばには1千トンを下回った。2012年以降は3百トン前後で推移しており、2019年は294トンであった。日本海北区の漁獲量は、近年1百トン以下で推移しており、2019年は24トンであった。2019年の全体の漁獲量(東シナ海区、日本海西区、日本海北区の計)は4,580トンであり、昨年の漁獲量から約31百トン減少した。

我が国の大中型まき網漁業によるマルアジの漁獲量は、1977年には60千トンを上回ったが、長期的には減少傾向にあり、近年は5百トン前後で推移している(図8、表2)。2019年の漁獲量は、過去最低値をとなった昨年の316トンよりも27トン少ない289トンであり、2年連続して過去最低値を記録した。マルアジを除くその他のムロアジ類の漁獲量は、1990年には46千トンを記録したが、2000年代には数千トン前後まで減少し、2014年には1,286トンと最低値を記録した。その後、マルアジを除くその他のムロアジ類の漁獲量は1千~2千トンで推移し、2019年は1,514トンであった。大中型まき網漁業の漁場は主に九州西岸と東シナ海南部である。

ムロアジ類の水揚げが多い鹿児島県主要港における中・小型まき網漁業のムロアジ類の 魚種別漁獲量を図9と表3に示す。ムロアジ類全体でみると、2005年以降の漁獲量は3千 トンで横ばい傾向にあったが、2015年以降は変動が激しい。漁獲量は2015年に1,790ト ンに減少し、2016年に4,830トンに増加した後は2年連続で減少したが、2019年は前年から936トン増加して3,018トンとなった。マルアジの漁獲量は2000年から2003年にかけて1千トン以上の高い水準にあったが、2004年以後には3百トン前後の低い水準となった。オアカムロの漁獲量は8百トン前後、アカアジは1百トン前後、その他のムロアジ類(マルアジ・オアカムロ・アカアジ除く)は2千トン前後で推移している。

韓国のアジ類の漁獲量は、2000 年以降 20 千~40 千トン前後で推移し、2019 年は 43,053 トンであった(「水産統計」韓国海洋水産部、http://www.fips.go.kr、2020 年 3 月)。これら漁獲量のほとんどはマアジであると考えられる。中国のその他アジ類(マアジ除く)の漁獲量は、2018 年において 493,952 トンと報告されている(「FAO 統計資料」FAO Fishery and Aquaculture Statistics. Global capture production 1950-2018、http://www.fao.org/fishery/statistics/software/fishstatj/en、2020 年 6 月)。

(3) 漁獲努力量

大中型まき網漁業における網数は、1973年の12千網から1989年の18千網まで増加した後、2019年には5千網まで減少した(図8)。鹿児島県主要港の中・小型まき網漁業における入港隻数は、1980年代前半には2千~3千隻と高い水準を維持していたが、1980年代後半から1990年代にかけて減少し、2000年代以降、10百~15百隻で推移している(図11)。

4. 資源の状態

(1) 資源評価の方法

ムロアジ類には複数の種が含まれており、それぞれについて資源量推定を行うための充分なデータはない。ここでは、ムロアジ類の漁獲に対して、単一の漁業種類としては大きな割合を占め、広域において操業する大中型まき網漁業の資源密度指数を資源量指標値として資源の状態を判断する(表 2、図 10、補足資料 1)。大中型まき網漁業による漁獲成績報告書では、マルアジとその他のムロアジ類に分けて報告されているため、それぞれについて、緯経度 30 分間隔で分けられた漁区ごとの 1 網当り漁獲量の総和を漁獲があった漁区数で割って資源密度指数を求め、マルアジとその他ムロアジ類の資源密度指数の相乗平均値をムロアジ類全体の資源量指標値とした。鹿児島県主要港における中・小型まき網漁業によるムロアジ類の漁獲が我が国のムロアジ類漁獲量全体に占める割合は 2000 年代に入り増加したが、操業海域が沿岸域に限られるため資源量指標値には利用せず、ムロアジ類の CPUE を参考資料として示した(図 11)。

(2) 資源量指標値の推移

大中型まき網漁業のマルアジの資源密度指数は、増減を繰り返しながら減少傾向で推移し、近年では低い水準にある(図 10、表 2)。マルアジの資源密度指数は 2013 年以降増加し、2017 年に 0.71 トン/網となったが、その後減少して 2019 年は 0.55 トン/網となった。マルアジを除くムロアジ類の資源密度指数は、1990 年代前半まで増減しながら推移してきたが、1990 年代後半に減少し、2000 年代前半にかけて低い水準となった。2000 年代後半には増加傾向に転じたが、その後増減を繰り返し、2019 年は 4.52 トン/網となっている。ムロアジ類全体の資源量指標値は、長期的には減少傾向で推移しており、2000 年代以降は低い水準にある。2019 年における資源量指標値は、1.57 トン/網であった。最近 5 年間 (2015~2019 年) では横ばいである。

鹿児島県主要港での中・小型まき網漁業によるムロアジ類の CPUE について、ムロアジ類 (マルアジ、オアカムロ、アカアジ除く) は、1990 年代前半において高い値を示したが、その後増減を繰り返しながら推移し、2019 年は 2000 年代中盤と同程度であった (図 11)。 2016 年以降のオアカムロの CPUE は 2000 年代前半と同程度まで増加したが、マルアジおよびアカアジの CPUE は、2000 年代後半以降、低い値で推移している。

(3) 漁獲物の体長組成

図 12 に鹿児島県および長崎県で 2016~2019 年に漁獲されたムロアジ類の体長組成を示す。マルアジの体長組成は 6~40 cm の範囲にあり、どの年も 18~23 cm にモードがあるが、2017、2018 年は 15~20 cm の小型魚が占める割合も高かった。クサヤモロの体長組成は 18~50 cm の範囲にあり、どの年も 28~30 cm にモードがあった。2017、2019 年のオアカムロの体長組成は 20~45 cm の範囲にあったが、35 cm 以上の大型魚が占める割合は 2017年よりも 2016 年の方が高かった。2016年に測定されたアカアジの体長組成は 20~35 cm の範囲にあり、25 cm 前後にモードがあった。なお、2018年はオアカムロの体長測定が行われなかった。

(4) 資源の水準・動向

資源の水準は 1973~2019 年における資源量指標値(大中まき網のマルアジおよびその他ムロアジ類の資源密度指数の相乗平均値)の最小値(1.02 トン/網)と最大値(8.47 トン/網)の間を 3 等分した値をそれぞれ低位と中位、中位と高位の区切りとした(図 10)。2019年の資源量指標値は 1.57 トン/網であり、低位と判断した。資源の動向は最近 5 年間(2015~2019年)の資源量指標値の推移から横ばいと判断した。

5. 2021 年 ABC の算定

(1) 資源評価のまとめ

ムロアジ類は複数種を含んだ総称であり、それぞれの資源水準および資源動向を判断するための資料が乏しい。また、外国漁船による漁獲状況も不明な点が多い。現状では、資源量指標値の水準と動向に合わせて漁獲することが現実的と考えられる。

(2) ABC の算定

資源状態は資源量指標値を基に判断したため、資源量指標値の水準および変動傾向に合わせた漁獲を行うことを管理方策とし、以下に示す ABC 算定規則 2-1) により 2021 年 ABC を算定した。なお、ABC とその基礎となる漁獲量は日本漁業に対する値である。

$$\begin{split} & ABClimit \ = \ \delta_1 \ \times \ Ct \ \times \ \gamma_1 \\ & ABCtarget \ = \ ABClimit \ \times \alpha \\ & \gamma_1 = (1 + k \times (b/I)) \end{split}$$

ここで、Ct は t 年の漁獲量。 δ_1 は資源水準で決まる係数、 γ_1 は資源量指標値の近年の変動から算定する。k は重み、b と I は資源量指標値の傾きと平均値、 α は安全率である。

ムロアジ類の加入量の年変動は魚種によって異なると考えられる。本来ならば種別に ABC を提案すべきだが、現状では、種別の漁獲量も明らかではないため、資源の変動を追うのは困難である。ムロアジ類の資源動向を示す指標値として、単一の漁業種類として大きな割合を占め、広範囲で操業を行う大中型まき網漁業のムロアジ類およびマルアジの資源密度指数の相乗平均値を求め、直近3年間(2017~2019年)の動向からb(-0.211)とI(1.784)を定めた。kを標準値(1.0)とした結果、 γ_1 は0.88と算出された。 δ_1 は、資源量指標値が長期的に減少し低い水準で推移していることを考慮して、低位水準の標準値(0.8)を用いた。Ct は、2019年における東シナ海区と日本海区(日本海西区・日本海北区)の合計漁獲量を用いた。

管理基準	Target/ Limit	2021 年 ABC (百トン)	漁獲割合 (%)	F値
0.0.52010.0.00	Target	26	— (70)	_
0.8·C2019·0.88	Limit	32	_	_

Limit は、管理基準の下で許容される最大レベルの漁獲量である。Target は、資源変動の可能性やデータ誤差に起因する評価の不確実性を考慮し、管理基準の下でより安定的な資源の増大または維持が期待される漁獲量である。ABCtarget = α ABClimit とし、係数 α には標準値 0.8 を用いた。ABC は東シナ海区と日本海区の合計である。

(3) ABC の再評価

昨年度評価以降追加されたデータセット	修正・更新された数値
2018 年漁獲量確定値	2018 年漁獲量

評価対象年	管理基準	F値	資源量	ABClimit	ABCtarget	漁獲量
(当初•再評価)	1	F 但	(百トン)	(百トン)	(百トン)	(百トン)
2019年(当初)	0.8·C2017·1.19	_	_	56	45	
2019年(2019年	0.8·C2017·1.19		_	56	45	
再評価)	0.8·C2017·1.19			30	43	
2019年(2020年	0.8·C2017·1.19	_	_	56	45	46
再評価)	0.8·C2017·1.19			30	43	40
2020年(当初)	0.8·C2018·0.97	_	_	60	48	
2020年(2020年	0.8·C2018·0.97			60	48	
再評価)	0.8.02018.0.97			00	40	

2018年漁獲量を確定値に更新したが、2020年再評価による ABC の変化は小さかった。

6. ABC 以外の管理方策の提言

マルアジは主要漁業において種単位の漁獲量が報告されているが、ムロアジ類については、種別の漁獲量を正確に把握することが困難な状況にある。また、中国や韓国等の外国漁船による漁獲量が多いとみられることから、全体の資源状態を把握するためには中国・韓国の情報も必要である。

7. 引用文献

- 岸田周三 (1972) 東シナ海産ムロアジ属魚類の漁業生物学的研究-I. 海域によるマルアジの形態の差異. 西海水研報告, **42**, 69-76.
- 岸田周三 (1974) 東シナ海産ムロアジ属魚類の漁業生物学的研究-II. まき網漁獲物から みた魚種別分布と漁獲量. 西海水研報告, 45, 1-14.
- 岸田周三 (1978) 東シナ海産ムロアジ属魚類の漁業生物学的研究-III. 東シナ海西部におけるマルアジの産卵期と稚仔の分布. 西海水研報告, **51**, 123-140.
- Ohshimo, S., M. Yoda, N. Itasaka, N. Morinaga and T. Ichimaru (2006) Age, growth and reproductive characteristics of round scad *Decapterus maruadsi* in the waters off west Kyushu, the East China Sea. Fish. Sci., **72**, 855-859.
- Ohshimo, S., T. Shiraishi, H. Tanaka, T. Yasuda, M. Yoda, H. Ishida and S. Tomiyasu (2014) Growth and reproductive characteristics of the roughear scad *Decapterus tabl* in the East China Sea.

JARQ, 48, 245-252.

- Shiraishi, T., H. Tanaka, S. Ohshimo, H. Ishida and N. Morinaga (2010) Age, growth and reproduction of two species of scad, *Decapterus macrosoma* and *D. macarellus* in the waters off southern Kyushu. JARQ, **44** (2), 197-206.
- 白石哲朗・由上龍嗣・田中寛繁・依田真里・大下誠二 (2010) 東シナ海におけるアジ科魚類 の生物特性に関する最新知見. 西海ブロック漁海沢研報, 18, 33-48.

水産庁調査研究部 (1973) 日本近海主要漁業資源. 189 pp.

(執筆者:日野晴彦、髙橋素光)

図1. 東シナ海におけるムロアジ類の分布

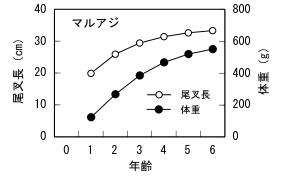


図2. マルアジの年齢・成長

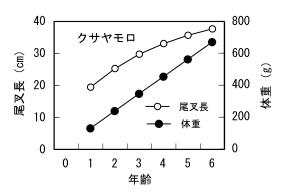


図3. クサヤモロの年齢・成長

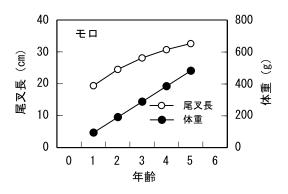


図4. モロの年齢・成長

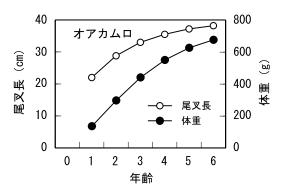


図 5. オアカムロの年齢・成長

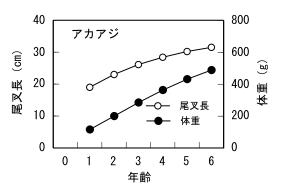


図 6. アカアジの年齢・成長

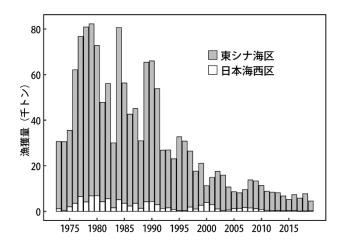


図7. ムロアジ類の海区別漁獲量(東シナ海区:福岡県~鹿児島県、日本海西区:山口県~福井県。日本海北区は微量であったため掲載していない。)

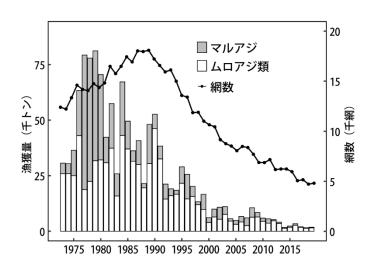


図8. 大中型まき網漁業によるムロアジ類の漁獲量と網数

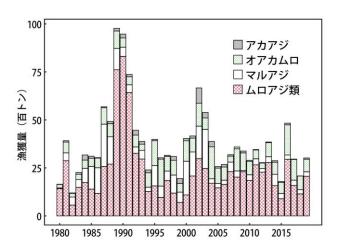


図 9. 鹿児島県主要港における中・小型まき網漁業によるムロアジ類漁獲量

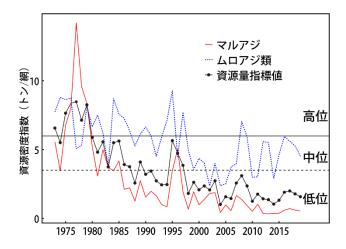


図 10. 大中型まき網漁業によるムロアジ類およびマルアジの資源密度指数(点線は資源量指標値による資源水準の基準)

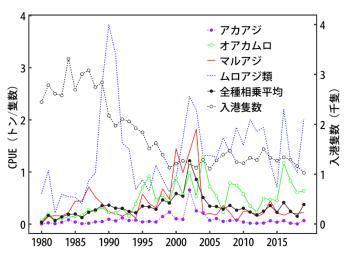


図 11. 鹿児島県主要港の中・小型まき網漁業によるムロアジ類 CPUE と入港隻数

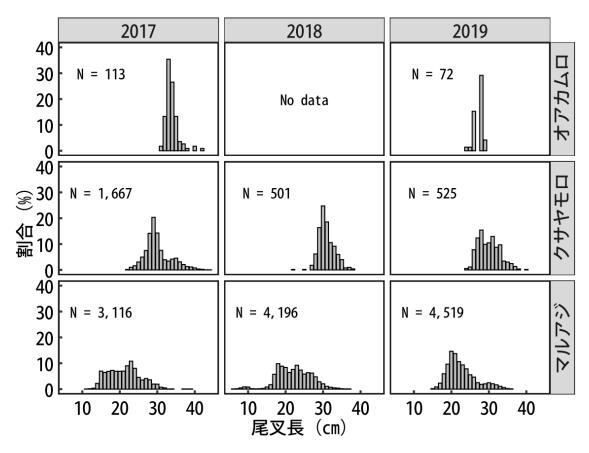


図 12. 鹿児島県および長崎県において 2017~2019 年に漁獲されたムロアジ類の体長組成

表 1. ムロアジ類の漁獲量の推移(トン) 日本海北区:石川県~青森県、日本海西区: 山口県~福井県、東シナ海区:福岡県~鹿児島県。

年	日本海北区	日本海西区	東シナ海区	合計
1973	0	1,148	29,505	30,653
1974	0	515	30,065	30,580
1975	0	1,982	33,586	35,568
1976	0	3,562	58,545	62,107
1977	406	6,557	70,156	77,119
1978	2	4,156	76,730	80,888
1979	222	6,806	75,469	82,497
1980	0	6,828	65,910	72,738
1981	0	4,272	43,582	47,854
1982	84	5,561	50,598	56,243
1983	14	1,588	28,458	30,060
1984	30	5,133	75,535	80,698
1985	120	3,583	52,750	56,453
1986	10	2,353	40,278	42,641
1987	79	3,577	41,508	45,164
1988	58	1,314	29,655	31,027
1989	6	4,219	61,196	65,421
1990	6	4,330	61,696	66,032
1991	37	2,946	50,867	53,850
1992	190	1,258	25,594	27,042
1993	77	1,587	25,339	27,003
1994	5	886	22,167	23,058
1995	12	391	32,303	32,706
1996	3	423	30,413	30,839
1997	8	1,914	24,536	26,458
1998	33	1,026	16,622	17,681
1999	104	2,725	18,363	21,192
2000	184	3,934	7,290	11,408
2001	56	2,936	11,980	14,972
2002	12	1,048	16,473	17,533
2003	31	476	15,413	15,920
2004	120	628	10,074	10,822
2005	148	1,223	7,394	8,765
2006	72	1,314	6,808	8,194
2007	152	1,671	7,884	9,707

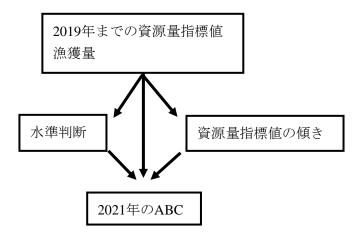
表 1. ムロアジ類の漁獲量の推移 (トン) (つづき)

年	日本海北区	日本海西区	東シナ海区	合計
2008	67	1,517	12,277	13,861
2009	96	1,191	12,158	13,445
2010	45	888	10,433	11,366
2011	26	520	8,286	8,832
2012	36	334	8,076	8,446
2013	23	399	7,744	8,166
2014	17	437	6,323	6,777
2015	19	378	4,851	5,248
2016	32	366	6,982	7,380
2017	10	166	5,672	5,848
2018	8	216	7,524	7,748
2019	24	294	4,262	4,580
		·		·

2019 年は暫定値。

表 2. 大中型まき網漁業によるムロアジ類漁獲量、網数、資源密度指数

	漁獲量	(トン)	網数	資源?	 密度指数(トン	//網)
年	マルアジ	ムロアジ類	(千網)	マルアジ	ムロアジ類	相乗平均値
1973	4,761	25,866	12	5.56	7.74	6.56
1974	4,492	25,879	12	3.45	8.78	5.51
1975	11,425	25,022	13	6.77	8.63	7.64
1976	20,261	43,017	15	8.01	8.74	8.37
1977	60,497	18,756	14	14.19	5.06	8.47
1978	55,467	22,443	14	9.58	5.32	7.14
1979	49,435	31,721	15	8.35	8.15	8.25
1980	38,427	32,069	14	5.21	6.65	5.89
1981	11,444	30,834	15	3.08	7.51	4.81
1982	20,055	37,384	16	4.99	6.21	5.56
1983	9,969	15,865	16	3.69	3.80	3.74
1984	24,074	43,119	16	3.48	8.69	5.50
1985	12,491	37,024	17	4.18	7.57	5.62
1986	4,685	31,519	17	2.11	7.25	3.91
1987	10,727	30,050	18	2.22	6.36	3.76
1988	1,967	19,515	18	1.26	5.26	2.57
1989	17,653	30,433	18	2.74	6.12	4.09
1990	6,490	46,128	17	1.55	6.65	3.21
1991	5,773	32,549	17	1.97	6.01	3.44
1992	6,677	14,514	16	1.65	4.52	2.73
1993	3,069	16,007	16	1.00	5.91	2.44
1994	1,784	16,626	15	0.85	7.12	2.46
1995	7,397	21,569	14	3.45	9.27	5.65
1996	11,036	14,563	13	5.04	4.47	4.75
1997	4,538	15,637	12	1.92	7.72	3.85
1998	1,289	11,968	12	0.67	4.96	1.82
1999	6,905	9,707	11	1.94	3.56	2.63
2000	2,148	3,960	11	0.99	4.36	2.08
2001	3,507	6,436	10	1.39	4.02	2.36
2002	5,365	5,403	9	1.81	2.36	2.07
2003	3,459	7,624	9	1.87	3.99	2.73
2004	1,085	4,565	9	0.43	2.38	1.02
2005	1,713	3,145	8	0.98	2.51	1.57
2006	2,494	4,148	8	0.56	3.73	1.45
2007	3,496	2,505	8	1.66	3.98	2.57


表 2. 大中型まき網漁業によるムロアジ類漁獲量、網数、資源密度指数(つづき)

左	漁獲量(トン)		網数	資源密度指数(トン/網)		
年	マルアジ	ムロアジ類	(千網)	マルアジ	ムロアジ類	相乗平均値
2008	4,232	6,324	8	1.37	7.03	3.10
2009	1,970	6,443	7	0.94	5.93	2.36
2010	1,422	4,476	7	0.52	2.98	1.25
2011	1,956	3,628	7	1.03	3.03	1.76
2012	513	4,735	6	0.37	5.58	1.43
2013	538	3,536	6	0.33	5.52	1.36
2014	470	1,286	6	0.37	2.90	1.04
2015	529	1,808	6	0.38	4.64	1.32
2016	666	2,695	5	0.61	5.95	1.90
2017	369	1,658	5	0.71	5.60	2.00
2018	316	1,302	5	0.60	5.27	1.78
2019	289	1,514	5	0.55	4.52	1.57

表 3. 鹿児島県主要港における中・小型まき網漁業によるムロアジ類の漁獲量と入港隻数

	是 : 坐.		·····································	魚獲量(トン)		
年 	隻数	マルアジ	オアカムロ	アカアジ	その他ムロアジ類	合計
1980	2,446	28	185	10	1,425	1,648
1981	2,784	413	564	70	2,869	3,917
1982	2,613	420	193	21	561	1,195
1983	2,578	399	284	96	1,483	2,262
1984	3,316	742	426	267	1,739	3,174
1985	2,694	1,186	425	108	1,392	3,110
1986	3,007	1,333	502	26	1,173	3,034
1987	3,085	2,201	859	49	2,576	5,685
1988	2,743	1,423	682	118	2,697	4,919
1989	2,842	1,114	909	136	7,610	9,769
1990	2,171	480	482	201	8,308	9,470
1991	1,970	407	420	121	6,422	7,369
1992	2,102	325	624	251	3,263	4,463
1993	2,057	453	322	143	2,962	3,879
1994	1,924	224	751	148	1,272	2,395
1995	1,837	1,057	1,297	76	1,560	3,991
1996	1,513	596	1,397	78	958	3,029
1997	1,625	502	760	65	1,833	3,160
1998	1,388	939	768	203	1,186	3,096
1999	1,128	534	454	260	701	1,949
2000	1,210	1,751	1,067	125	1,092	4,034
2001	1,267	1,252	721	114	2,078	4,165
2002	1,219	1,693	1,193	797	2,982	6,665
2003	1,122	2,043	596	286	2,463	5,388
2004	1,287	235	1,666	280	1,699	3,880
2005	1,109	226	801	81	1,461	2,570
2006	1,276	224	687	136	1,635	2,683
2007	1,391	494	316	71	2,305	3,185
2008	1,467	323	1,152	101	2,019	3,595
2009	1,241	60	920	96	2,301	3,376
2010	1,217	299	702	48	1,841	2,890
2011	1,327	315	460	23	2,656	3,455
2012	1,281	183	292	21	2,277	2,774
2013	1,499	304	735	30	2,778	3,848
2014	1,327	591	627	85	1,574	2,876
2015	1,270	275	575	47	892	1,790
2016	1,336	230	1,568	88	2,944	4,830
2017	1,290	283	1,075	21	1,580	2,959
2018	1,161	228	706	5	1,143	2,082
2019	1,024	234	653	70	2,061	3,018

補足資料 1 資源評価の流れ

