

スルメイカ(冬季発生系群)①

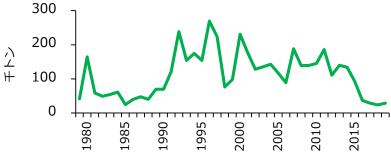

スルメイカは日本周辺に広く生息しており、本系群はこのうち主に冬季に東シナ海で発生し、太平洋を北上、 冬季に日本海を南下する群である。本系群の漁獲量や資源量は漁期年(4月〜翌年3月)の数値を示す。

図1 分布図

太平洋、オホーツク海、日本海、東シナ海に分布するが、我が国における主な漁場は太平洋に形成される

産卵場は主に冬季に東シナ 海に形成される

図2 漁獲量の推移

漁獲量は1980年代は低水準で推移し、1989年以降増加傾向に転じて1996年には約40.0万トンになった。その後は比較的安定して推移していたが、2016年以降大きく減少しており、2019年の漁獲量は6.4万トンであった。漁獲量には日本・韓国に加え、太平洋でのロシア・中国による漁獲を含む。

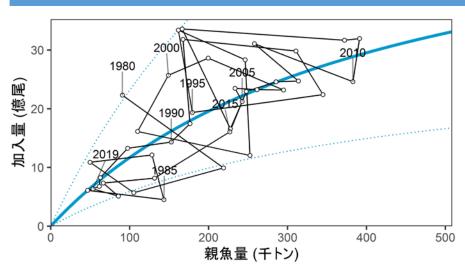
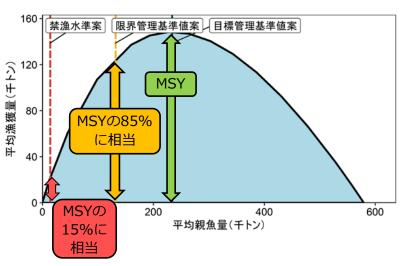

漁期年

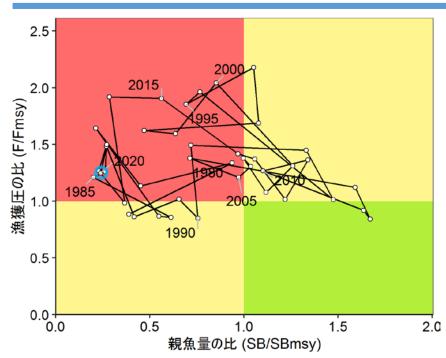
図3 資源量


資源量は1981年~1988年は40.0万トン以下で推移していたが、1989年以降増加して1996年には103.9万トンに達した。その後は大きく変動する年があるものの、概ね50万~100万トンで推移していたが、2015年以降大きく減少に転じ、2020年は16.6万トンと推定された。

スルメイカ(冬季発生系群)②

図4 再生産関係

1979年~2018年の親魚量と1980年~2019年までの加入量(資源量)に対し、ベバートン・ホルト型再生産関係(青太線、青点線:90%信頼区間)を適用した。


図5 管理基準値案と禁漁水準案

最大持続生産量(MSY)を実現する親魚量(SBmsy)は23.4万トンと算定される。目標管理基準値としてはSBmsyを、限界管理基準値としてはMSYの85%の漁獲量が得られる親魚量を、禁漁水準としてはMSYの15%の漁獲量が得られる親魚量を提案する。

目標管理基準値案	限界管理基準値案	禁漁水準案	2020年の親魚量	MSY
23.4万トン	13.2万トン	1.4万トン	5.6万トン	14.9万トン

*漁期後の資源量を親魚量、翌年の資源量を加入量とし、再生産関係を求めている。

スルメイカ(冬季発生系群)③

図6 神戸プロット(神戸チャート)

漁獲圧(F)は、1990年代と2000年代の一部の年を除き、多くがMSYを実現する漁獲圧(Fmsy)を上回った。2014年以降では2017年を除き、漁獲圧はFmsyを上回り、親魚量はMSYを実現する親魚量(SBmsy)を下回った。

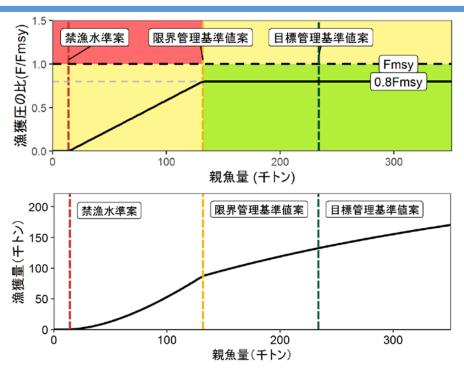


図7 漁獲管理規則案(上図:縦軸は漁獲圧、下図:縦軸 は漁獲量)

Fmsyに乗じる安全係数であるβを0.8とした場合の漁獲管理規則案を黒い太線で示す。

- ※漁獲圧・漁獲量は、日本、韓国、ロシアと中国(北西太平洋における漁獲)の合計値
- ※漁獲管理規則案については「検討結果の読み方」を参照

スルメイカ(冬季発生系群)④

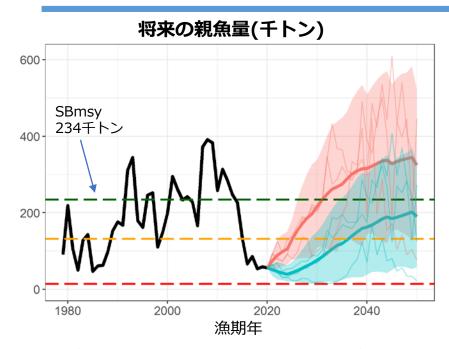
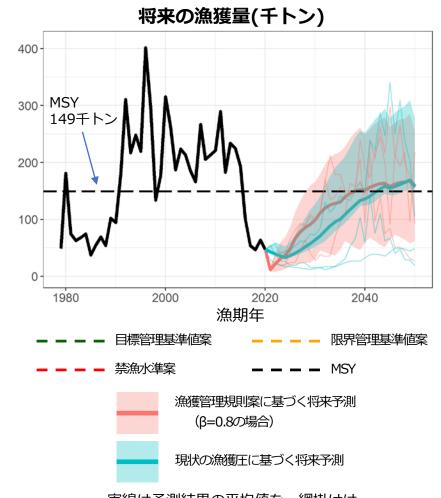



図8 漁獲管理規則案の下での親魚量と漁獲量の将来予 測(現状の漁獲圧は参考)

低加入シナリオ(近年の低加入が5年間継続した後、徐々に加入が好転する仮定)を適用し、βを0.8とした場合の漁獲管理規則案に基づく将来予測の結果を示す。0.8Fmsyでの漁獲を継続することにより、長期的には漁獲量はMSY水準、親魚量は目標管理基準値案より多い状態で推移する。

実線は予測結果の平均値を、網掛けは 予測結果の80%が含まれる範囲を示す

スルメイカ(冬季発生系群)⑤

2030年に親魚量が目標管理基準値案(23.4万トン)を上回る確率

夷 1	将来の	平均親魚量	(千)	トン)	
1X I .	TUAVU	' 「 	\	·	

2025年に親魚量が限界管理基準値案(13.2万トン)を上回る確率

β	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030		
1.0	56	73	85	92	96	99	120	135	147	156	163	17%	18%
0.9	56	74	87	96	102	105	128	146	160	172	180	23%	27%
8.0	56	75	90	101	107	112	137	158	175	189	198	29%	38%
0.7	56	76	93	105	114	120	148	172	192	208	219	35%	47%
0.6	56	77	96	110	121	129	160	189	212	230	242	43%	52%
0.5	56	78	99	116	129	140	175	208	235	255	267	51%	56%

表2. 将来の平均漁獲量(千トン)

β	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
1.0	47	14	26	35	41	43	54	73	84	90	95
0.9	47	13	24	34	39	43	54	72	82	89	94
0.8	47	12	22	32	38	42	53	70	80	87	92
0.7	47	10	20	30	36	40	51	67	77	83	88
0.6	47	9	18	27	34	38	49	63	72	78	83
0.5	47	7	16	24	30	35	45	57	66	72	75

低加入シナリオおよび漁獲管理規則案に基づく将来予測において、βを0.5~1.0の範囲で変更した場合の平均親魚量と平均漁獲量の推移を示す。本資源については、寿命が1年と短命であることから、2025年に親魚量が限界管理基準値案を上回る確率を合わせて示す。2020年の漁獲量は、予測される資源量と2017年~2019年の平均漁獲圧により仮定し、2021年から漁獲管理規則案に基づく漁獲を開始する。 βを0.5とした場合、2021年の平均漁獲量は0.7万トン、2025年に親魚量が限界管理基準値案を上回る確率は51%と予測される。

*表の値は今後も資源評価により更新される。

* 親魚量は各年の漁期後の資源量である。