
ゴマサバ (東シナ海系群) ①

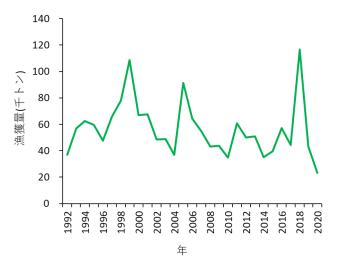
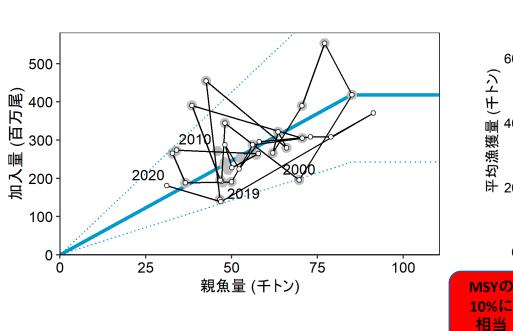

ゴマサバは日本周辺に広く生息しており、本系群はこのうち東シナ海から日本海側に分布する群である。

図1 分布図

ゴマサバはマサバに 比べ高温(南方)は に分布する。 を期に が九州西岸域 一大で で大のには 本本で で大のには で大のには がたい で大のには がたい で大のに でいる。 では がれい では でいる。 でい。 でいる。 でい。


図2 漁獲量の推移

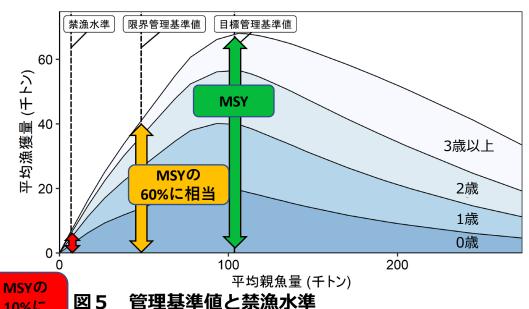

日本と韓国を合わせた 漁獲量は、年変動があ る。2018年(11.7万ト ン)から急減し、2020 年は2.3万トンであった。

図3 資源量と年齢別資源尾数

資源の年齢組成を尾数でみると、0歳(青)、1歳(緑)を中心に構成されている。資源量は、1992~2018年まで9.4万~23.8万トンの範囲で推移していたが、2019年に急減し、2020年は9.2万トンであった。

ゴマサバ (東シナ海系群) ②

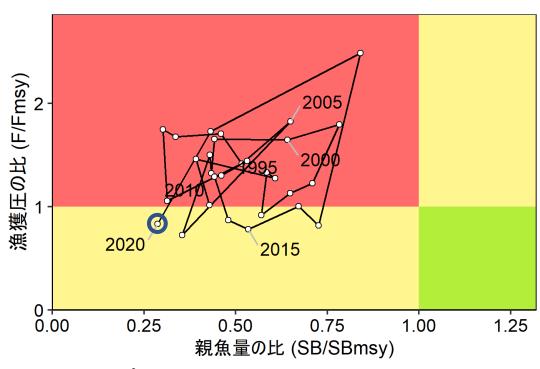


図4 再生産関係

ホッケー・スティック型の再生産関係を適用する。 図中の点線は、再生産関係の下で、実際の親魚量と 加入量の90%が含まれると推定される範囲である。 灰色丸は再生産関係を推定した時の観測値。 最大持続生産量(MSY)を実現する親魚量(SBmsy)は、ホッケー・スティック型の再生産関係に基づき10.9万トンと算定される。目標管理基準値はSBmsy、限界管理基準値はMSYの60%の漁獲量が得られる親魚量、禁漁水準はMSYの10%の漁獲量が得られる親魚量である。

目標管理基準値	限界管理基準値	禁漁水準	2020年の親魚量	MSY
10.9万トン	5.1万トン	0.8万トン	3.1万トン	7.6万トン

ゴマサバ (東シナ海系群) ③

図6 神戸プロット(神戸チャート)

漁獲圧(F)は1992年以降、多くの年で最大持続生産量を実現する漁獲圧(Fmsy)を上回っている。親魚量は、全ての年において最大持続生産量を実現する親魚量(SBmsy)を下回っている。

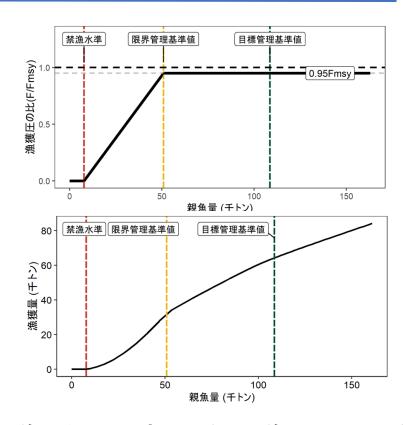


図7 漁獲管理規則(上図:縦軸は漁獲圧、下図:縦軸 は漁獲量)

Fmsyに乗じる調整係数であるβを0.95とした場合の漁獲管理規則を黒い太線で示す。下図の漁獲量については、平均的な年齢組成の場合の漁獲量を示した。

※漁獲管理規則については「検討結果の読み方」を参照

ゴマサバ(東シナ海系群) ④

将来の親魚量(千トン)

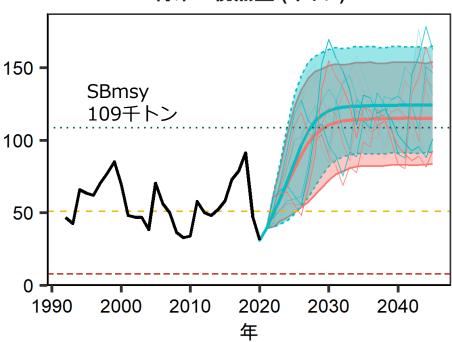
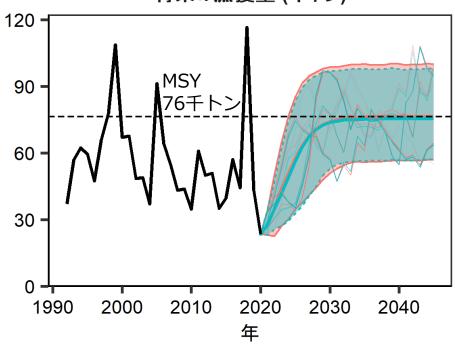



図8 漁獲管理規則の下での親魚量と漁獲量の将来予測(現状の漁獲圧は参考)

βを0.95とした場合の漁獲管理規則に基づ く将来予測結果を示す。0.95Fmsyでの漁獲 を継続することにより、漁獲量はMSY付近 で、親魚量は目標管理基準値付近で推移す る。

将来の漁獲量(千トン)

漁業管理規則に基づく将来予測現状の漁獲圧に基づく将来予測

実線は予測結果の平均値を、網掛けは予測結果の90%が含まれる範囲を示す。

-·-·- MSY

--- 目標管理基準値

----- 限界管理基準値

·禁漁水準

ゴマサバ(東シナ海系群) ⑤

表1. 将来の平均親魚量(千トン) 2030年に親魚量が目標管理基準値(10.9万トン)を上回る確率

β	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
1.00	31	39	49	58	67	76	84	91	96	100	103	39%
0.95	31	39	49	60	70	80	90	98	104	108	110	51%
0.90	31	39	49	61	73	85	96	105	112	116	118	64%
0.80	31	39	49	64	79	95	110	121	127	131	133	85%
0.70	31	39	49	67	86	107	125	137	144	147	148	96%

表2. 将来の平均漁獲量(千トン)

β	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
1.00	23	28	36	44	51	57	62	67	70	72	73
0.95	23	28	35	44	51	58	63	68	71	73	74
0.90	23	28	33	43	51	58	64	69	72	73	74
0.80	23	28	30	41	50	58	64	69	71	73	73
0.70	23	28	27	38	48	57	63	67	69	70	71

漁獲管理規則に基づく将来予測において、βを 0.7~1.0の範囲で変更した場合の平均親魚量と平均漁獲量の推移を示す。2021年の漁獲量は、予測される資源量と2020年の漁獲圧により仮定し、2022年から漁獲管理規則に基づく漁獲を開始する。βを 0.95とした場合、2022年の平均漁獲量は 3.5万トン、2030年に親魚量が目標管理基準値を上回る確率は 51%と予測される。

上記の表は暦年(1月〜12月)の値であり、2022年漁期(7月〜翌年6月)の生物学的許容漁獲量(ABC)は4.0万トンである

※表の値は今後も資源評価により更新される。