

ウルメイワシ(対馬暖流系群)①

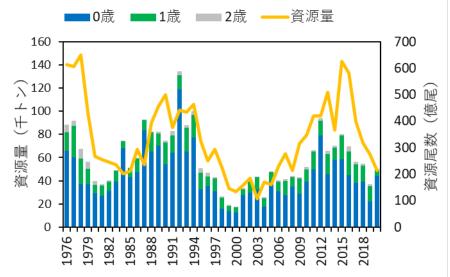
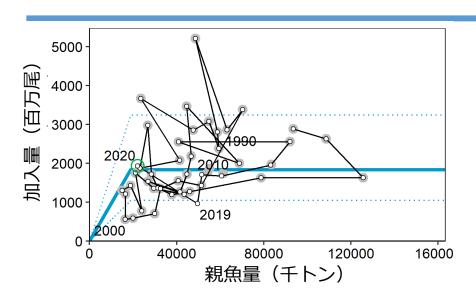

ウルメイワシは日本の沿岸域を中心に分布し、特に本州中部以南に多い。本系群はこのうち日本海から九州西岸 に分布する。

図1 分布域

日本海から九州西 岸にかけて分布し、 沿岸域での分布が 多い。


図2 漁獲量の推移

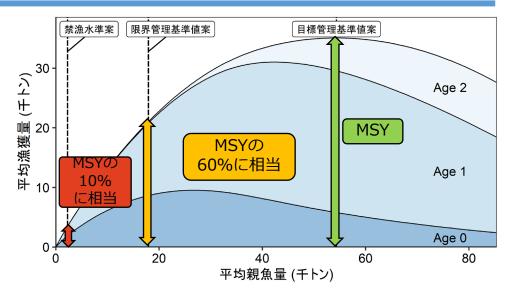

漁獲量は、1990年代後半から2000年にかけて1.0万トンまで減少したが、2001年以降は増加傾向にあり、2013年と2016年には5.0万トンをこえた。その後漁獲量は減少し、2020年は2.0万トンと大きく減少した。

図3 資源量と年齢別資源尾数

資源の年齢組成を尾数でみると、0歳 (青)を中心に構成されている。2020年 の資源量は4.9万トンであった。

ウルメイワシ (対馬暖流系群) ②

図4 再生産関係

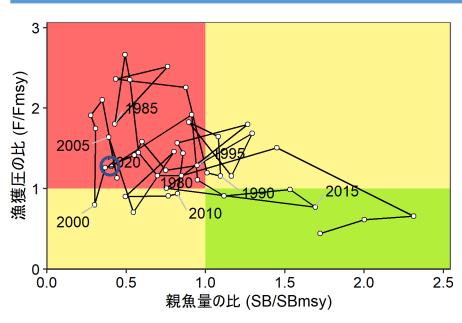

1976~2018年の親魚量と加入量に対し、ホッケー・スティック型再生産関係(青太線)を適用した。図中の点線は、再生産関係の下で、実際の親魚量と加入量の90%が含まれると推定される範囲である。

図5 管理基準値と禁漁水準

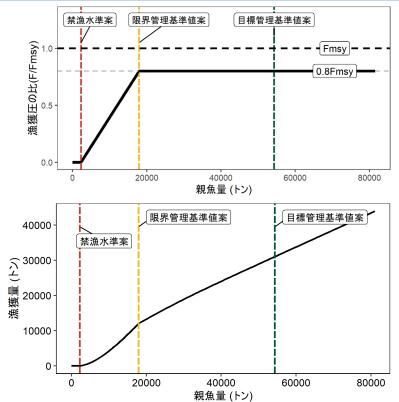
最大持続生産量(MSY)を実現する親魚量 (SBmsy) は5.4万トンと算定される。

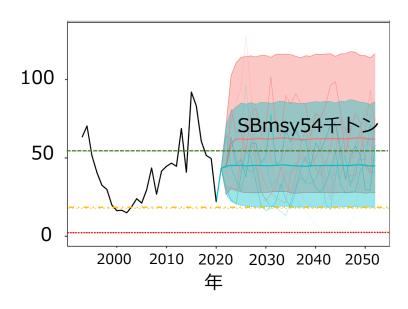
目標管理基準値案	限界管理基準値案	禁漁水準案	2020年の親魚量	MSY
5.4万トン	1.8万トン	0.2万トン	2.2万トン	3.5万トン

ウルメイワシ(対馬暖流系群)③

図6 神戸プロット(神戸チャート)

漁獲圧(F)は、1976~1978年は、MSYを与える水準を下回っていたが、1979年以降は増加し、ほとんどの年でMSYを与える水準を上回った。2015~2017年はFmsyと同程度か下回って推移したが、2018年以降はFmsyを上回ったと判断される。親魚量も2003年以降、最大持続生産量を実現する親魚量(SBmsy)を上回っていた。2020年は、漁獲圧がFmsyを上回り、親魚量がSBmsyを下回っている。




図7 漁獲管理規則(上図:縦軸は漁獲圧、下図:縦軸は漁獲量)

Fmsyに乗じる調整係数であるβを0.8とした場合の 漁獲管理規則を黒い太線で示す。下図の漁獲量につ いては、平均的な年齢組成の場合の漁獲量を示した。

※漁獲管理規則については「検討結果の読み方」を 参照

ウルメイワシ(対馬暖流系群)④

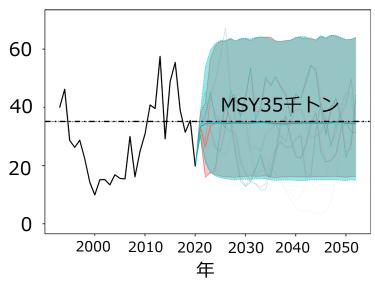

将来の親魚量(千トン)

図8 漁獲管理規則の下での親魚量と漁獲量の将来 予測(現状の漁獲圧は参考)

βを0.8とした場合の漁獲管理規則案に基づくと、 親魚量は平均的には緩やかに増加する。

将来の漁獲量(千トン)

漁獲管理規則案に基づく将来予測 (β=0.8の場合)現状の漁獲圧に基づく将来予測

実線は予測結果の平均値を、網掛けは予測結果(1万回のシミュレーションを試行)の90%が含まれる範囲を示す。

ウルメイワシ(対馬暖流系群)⑤

表1. 将来の平均親魚量(千トン)

2032年に親魚量が目標管理基準値案(5.4万トン)を上回る確率

β	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032		
1.0	22	43	45	53	55	55	54	55	55	55	55	55	55	42	%
0.9	22	43	45	56	58	58	58	58	58	58	58	58	59	48	%
0.8	22	43	45	59	62	62	62	62	62	62	62	62	62	54	%
0.7	22	43	45	63	66	67	66	66	67	67	67	67	67	61	%

表2. 将来の平均漁獲量(千トン)

β	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
1.0	20	33	30	35	35	35	35	35	35	35	35	35	35
0.9	20	33	28	34	35	35	35	35	35	35	35	35	35
0.8	20	33	26	33	35	35	35	35	35	35	35	35	35
0.7	20	33	24	32	34	34	34	34	34	34	34	34	34

漁獲管理規則案に基づく将来予測において、βを 0.7~1.0の範囲で変更した場合の平均親魚量と平均漁獲量の推移を示す。2021年の漁獲量は、予測される資源量と2017~2019年の平均漁獲圧により仮定し、2022年から漁獲管理規則案に基づく漁獲を開始する。漁獲管理規則案(β=0.8)に基づくと、2022年の平均漁獲量は2.6万トン、2032年に親魚量が目標管理基準値案を上回る確率は54%と予測される。