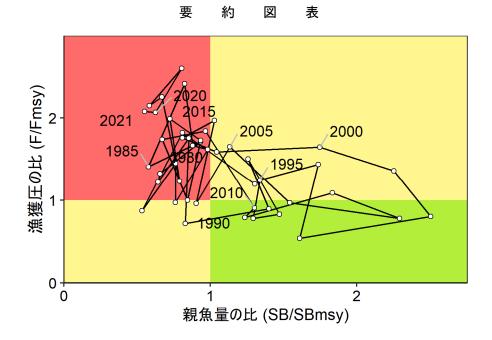
令和4(2022)年度カタクチイワシ対馬暖流系群の資源評価

水産研究・教育機構 水産資源研究所 水産資源研究センター 水産技術研究所 環境・応用部門


参画機関:青森県産業技術センター水産総合研究所、秋田県水産振興センター、山形県水産研究所、新潟県水産海洋研究所、富山県農林水産総合技術センター水産研究所、石川県水産総合センター、福井県水産試験場、京都府農林水産技術センター海洋センター、兵庫県立農林水産技術総合センター但馬水産技術センター、鳥取県水産試験場、島根県水産技術センター、山口県水産研究センター、福岡県水産海洋技術センター、佐賀県玄海水産振興センター、長崎県総合水産試験場、熊本県水産研究センター、鹿児島県水産技術開発センター、海洋生物研究所

要約

本系群の資源量について、産卵量と長崎県における中・小型まき網の標準化 CPUE をチューニング指数として用いたコホート解析により推定した。資源量は 1977 年以降、2020 年まで増減を繰り返しながら 11.3 万~42.6 万トンで推移した。2009 年以降は減少傾向にあり、 2021 年は過去最低となる 10.4 万トンと推定された。親魚量は増減を繰り返しながら 4.5 万~21.0 万トンで推移した。2010 年以降の親魚量は減少傾向にあり、2021 年は 4.6 万トンと推定された。

令和3年9月に開催された「管理基準値等に関する研究機関会議」において、本系群の再生産関係にはホッケー・スティック型が適用されており、これに基づき推定された最大持続生産量 (MSY) を実現できる水準の親魚量 (SBmsy) は8.4万トンである。この基準に従うと、本系群の2021年の親魚量は、MSY を実現する水準を下回る。また、本系群に対する2021年の漁獲圧はMSY を実現する水準の漁獲圧 (Fmsy) を上回る。親魚量の動向は近年5年間 (2017~2021年) の推移から「横ばい」と判断される。

本系群では、管理基準値や将来予測など、資源管理方針に関する検討会の議論をふまえて最終化される項目については管理基準値等に関する研究機関会議において提案された値を暫定的に示した。

MSY、親魚量の水準と動向、および ABC						
MSY を実現する水準の親魚量	84 千トン					
2021 年の親魚量の水準	MSY を実現する水準を下回る					
2021 年の漁獲圧の水準	MSY を実現する水準を上回る					
2021年の親魚量の動向	横ばい					
最大持続生産量(MSY)	51 千トン					
2023 年の ABC	-					

コメント:

・ABCは、本系群の漁獲管理規則が「資源管理方針に関する検討会」で取り纏められ、「水産政策審議会」を経て定められた後に算定される。

近年の資源	近年の資源量、漁獲量、漁獲圧、および漁獲割合									
年	資源量 (千トン)	親魚量 (千トン)	漁獲量 (千トン)	F/Fmsy	漁獲割合 (%)					
2017	130	56	50	2.25	39					
2018	130	49	44	2.15	34					
2019	135	68	54	2.60	40					
2020	113	53	46	2.06	41					
2021	104	46	41	2.08	39					
2022	144	65	41	0.96	28					
2023	167	90	-	-	_					

- ・2022年、2023年の値は将来予測に基づく平均値である。
- ・2022年の漁獲量として、2021年の漁獲量と同等の値を用いた。

1. データセット

本件資源評価に使用したデータセットは以下のとおり

データセット	基礎情報、関係調査等
年齢別•年別漁獲	漁業·養殖業生産統計年報(農林水産省)
尾数	主要港水揚量(新潟~鹿児島(14)府県)
	月別体長組成調査(水研、新潟~鹿児島(14)府県)
資源量指数	
•魚群量	魚群分布調査「計量魚探などを用いた浮魚類魚群量調査」(8~9月、水
	研)
	・計量魚群探知機、中層トロール
•仔稚分布密度	新規加入量調査「ニューストンネットを用いた新規加入量調査」(4月、水
	研)
	・ニューストンネット
	新規加入量調査「中層トロールなどを用いた浮魚類魚群量調査」(5~6
	月、水研)
	・ニューストンネット
•資源量	長崎県中・小型まき網漁獲量(FRA-SA2022-SC06-05)*
•産卵量	卵稚仔調查(周年、水研、青森~鹿児島(17)府県)*
	・ノルパックネット
自然死亡係数(M)	年当たり 1.0 を仮定(大下・田中 2009)

^{*}はコホート解析におけるチューニング指数である。

2. 生態

(1) 分布・回遊

カタクチイワシは、日本海では日本・朝鮮半島・沿海州の沿岸域を中心に分布すると考えられている(落合・田中 1986)。これに加えて、日本海の中央部や間宮海峡以南の北西部においても本種の分布報告があることから(ベリャーエフ・シェルシェンコフ 未発表)、日本海における本系群の分布域は沿岸域から沖合域まで広範囲に及ぶと考えられる。東シナ海においても、本種は日本・朝鮮半島・中国の沿岸域を中心に、沖合域まで分布することが報告されている(図 2-1、Iversen et al. 1993、Ohshimo 1996)。日本海および東シナ海における日本漁船の主漁場は、日本海西部および九州北西岸の沿岸域であることから、カタクチイワシ対馬暖流系群の資源評価では、これら沿岸域に分布するものを対象とする。日本海および東シナ海におけるカタクチイワシの詳細な回遊様式は不明であり、沿岸・沖合間での資源交流の実態を解明することは、本種の生態を理解するうえで重要である。

(2) 年齢・成長

本系群の成長様式は、発生時期によって異なることが知られている。本評価では、耳石に 形成される日周輪の解析結果および体長組成の経月変化から、孵化した個体が半年後まで に被鱗体長で約9cmまで成長すると仮定した。体長組成の経月変化から、春季と秋季の発 生群について成長様式を求めたところ、次のような結果を得た(図2-2、大下2009)。

春季発生群: $BL_t = 143.96\{1 - \exp(-0.15(t + 0.44))\}$ 秋季発生群: $BL_t = 158.59\{1 - \exp(-0.09(t + 0.74))\}$

ただし、BLt は孵化から t ヶ月後における被鱗体長(mm)である。本種の寿命は 3 年程度と考えられている。

(3) 成熟·産卵

本系群の産卵は、鹿児島県西岸から北海道西岸に亘る対馬暖流域全域において行われる。 産卵は能登半島以西の水域では冬季を除いてほぼ周年に亘り、能登半島以北では夏季を中心とした温暖な時期に行われる(内田・道津 1958)。野外採集個体の卵巣の組織学的観察から、鳥取県沿岸においては、体長 11.9 cm 以上のほとんどの個体が産卵可能であることがわかっている(志村ほか 2008)。この結果と上述の成長式とを併せると、春季発生群のほとんどが翌年の産卵期までに産卵可能と推察される。一方、若狭湾では体長 8.5 cm の成熟個体の報告例があることから(Funamoto et al. 2004)、本種は環境条件が合致した場合には 0 歳でも産卵可能と考えられるが、本評価では全体の産卵量に対する 0 歳魚による産卵量は非常に少ないとみなし、初回成熟年齢を満 1 歳と仮定した(図 2-3)。

(4) 被捕食関係

カタクチイワシは、動植物プランクトンのうち主にカイアシ類を餌料とする (Tanaka et al. 2006)。本種は多様な動物種の餌料となっており、仔稚魚期にはマアジ・マサバなどの魚食性魚類や肉食性動物プランクトンに、未成魚・成魚期には魚食性魚類の他に、クジラやイルカなどの海産ほ乳類や海鳥類などにも捕食される。

3. 漁業の状況

(1) 漁業の概要

本系群の成魚は、日本海北区(青森県〜石川県)では主に定置網により漁獲され、日本海西区(福井県〜山口県)では主に大中型まき網・中型まき網・定置網などにより漁獲されている。また東シナ海区(福岡県〜鹿児島県)では、主に中・小型まき網により漁獲されている。なお、仔魚は主に熊本県や鹿児島県の沿岸域においてシラス漁業によって漁獲されている。

(2) 漁獲量の推移

漁獲量の集計にあたり、本系群の漁獲量を、漁業・養殖業生産統計年報における青森県~ 鹿児島県の合計値に、太平洋海区に所属する漁船による東シナ海区における漁獲量(漁獲成 績報告書より集計)を足し、さらに東シナ海区に所属する漁船による太平洋海域における漁 獲量(漁獲成績報告書より集計)を差し引いた値とした(図 3-1、表 3-1)。また、漁業・養 殖業生産統計年報におけるシラスは全てカタクチイワシの仔魚とみなした。

本系群のシラスを除いた漁獲量は、1997年を除いて1996~2000年には10.0万トンを超

えていたが、2001年に急減し、2004年には6.1万トンまで減少した(図3-1、表3-1)。漁獲量はその後、 $2005\sim2008$ 年にかけて9.7万トンまで増加したが、2009年以降は減少傾向にある。2021年における漁獲量は4.1万トンであった。

海区別にみると、日本海北区における漁獲量は 1995 年に 0.9 万トンまで増加した後、2001年を除いて 0.1 万~0.7 万トン前後で増減し、2021年に 0.2 万トンを示した(図 3-1、表 3-1)。

日本海西区における漁獲量は 1991~1998 年にかけて 7.0 万トンまで増加したが、その後減少し、2001~2011 年にかけて 2.0 万トン前後で推移した(図 3-1、表 3-1)。その後漁獲量は減少傾向にあり、2021 年は 0.8 万トンであった。

東シナ海区における漁獲量は $1990\sim2000$ 年にかけて増加傾向にあり、2000 年には 6.5 万トンに達し、日本海西区を上回るようになった(図 3-1、表 3-1)。漁獲量はその後、2.6 万~ 7.0 万トンの間で推移し、2021 年は 3.1 万トンであった。

対馬暖流域の沿岸域におけるシラスの漁獲量は、1977~1987 年にかけて 0.2 万~0.7 万トンの間で増減したが、以後およそ 10 年間は 0.6 万トン前後で推移した (表 3-1)。漁獲量は 1999 年と 2000 年に 1.0 万トンを超えたが、2002 年には 0.5 万トン未満まで急減した。その後、漁獲量は 2005 年前後に再び 1.0 万トン近くまで増加したが、2008 年以降は減少して 2021 年は 0.3 万トンであった。

韓国では、韓国南岸および東岸においてカタクチイワシが漁獲されている(韓国国立水産振興院 2000)。多少の増減はみられるものの、韓国では 1995 年以降 2015 年まで、20 万トン超の漁獲が続いた(表 3-1、水産統計(韓国海洋水産部)、https://www.fips.go.kr/p/Main/、2022 年 8 月)。漁獲量は 2016 年に 14 万トンに落ち込んだ後、20 万トン前後で推移したが、2021 年は 14 万トンであった。

中国によるカタクチイワシの漁獲量は日本と韓国よりも多く、1993 年に 50 万トンを超え 1996~2004 年には 100 万トン前後で推移した (表 3-1、FAO、Fishery and Aquaculture Statistics. Global capture production 1950–2020、http://www.fao.org/fishery/statistics/software/fishstatj/en、 2022 年 8 月)。中国による漁獲量はその後 2009 年まで一旦減少したが、以後再び増加して 2015 年には 96 万トンに達した。しかし、2016 年以降漁獲量は減少傾向にあり、データが利用可能な直近年である 2020 年は 61 万トンであった。

本系群の年齢別漁獲尾数の推移を図 3-2 と補足表 2-2 に示した。本系群の漁獲尾数の 38 ~78%は 0 歳魚によって占められた。1977 年以降、0 歳魚の漁獲尾数は増減を繰り返しながら増加傾向にあり、2005 年に最大値(134 億尾)を示したが、その後減少し 2009 年に 35 億尾となった。2010~2020 年における 0 歳魚の漁獲尾数は 32 億~65 億尾で推移したが、2021年は 71 億尾と推定され、2010年以降で最も高い値を示した。2021年における 1 歳魚の漁獲尾数は 31 億尾、2 歳魚の漁獲尾数は 0.5 億尾と推定された。

(3) 漁獲努力量

2001 年以降、本系群における漁獲量の半数程度を占める長崎県における中・小型まき網の日毎の入港隻数の合計値が漁獲努力量の指標として利用できると考えられる。入港隻数は減少傾向にあり、2001~2008 年にかけて 8 千隻前後で推移したが、2021 年には 5,615 隻となった (図 3-3)。

4. 漁業の状況

(1) 資源評価の方法

令和 2 年度まで本系群ではシラスを含めた資源評価をベースケースとしていたが、シラスの漁獲量を考慮しない太平洋系群および瀬戸内海系群との整合を図るため、令和 3 年度の資源評価ではシラスを含めない年別年齢別漁獲尾数に基づくコホート解析により資源量を推定した(日野ほか 2022)。本系群の漁獲量は 2009 年以降減少傾向にあるが、これが資源の減少を反映したものか、漁獲戦略の変更などによる取り控えの結果なのかを判断するため、令和 4 年度の資源評価では資源量指標値を用いたコホート解析(以下、チューニングVPA)による資源評価をベースケースとした。昨年度試行したチューニングVPA(日野ほか2022)に準じて、2009~2021 年における長崎県中・小型まき網の標準化された 1 日 1 隻あたりの漁獲量(以下、長崎 CPUE)と 2001~2021 年における日本海および東シナ海の産卵量を用いて、2021 年の漁獲係数 F の調整を行った(補足資料 1~2)。シラスを含めた場合や、異なる自然死亡係数を用いた場合などの資源評価結果は補足資料 8 に示した。

(2) 資源量指標値の推移

漁獲係数 F の調整に使用したチューニング指標値を補足表 2-1 に示した。日本海(3~6月)と東シナ海(3~4月)における産卵量は 1998~2000 年に多く、2001 年は少なかったものの、2004 年は合計 10084 兆粒と 1979 年以降の最高値を示した(図 4-1)。2009 年以降の産卵量は 789 兆~3835 兆粒の間で推移している。2021 年における産卵量は 2020 年(1991億粒)の 2 倍近い値である 3824 兆粒であった。2009 年以降の長崎 CPUE は 2,612~5,949 の間で増減し、2019 年以降は緩やかな減少傾向であり、2021 年は 2,876 を示した(補足表 2-1)。各指標値を平均値で割り規格化した値を図 4-2 に示した。規格化した長崎 CPUE は産卵量よりも安定して推移した。

春季~夏季に行われている計量魚群探知機や中層トロールなどを用いた浮魚類魚群量調査について補足資料7に示した。それぞれの調査で算出される資源量指標値は、系群全体の資源量をどのように反映しているか検討中のため、資源動向を判断するための参考値としての利用に留めた。

(3) 資源量と漁獲圧の推移

チューニング VPA により推定した資源量は 1994 年まで 17 万トン前後で推移したが、 1995 年以降増加傾向を示して 1998 年に 42.6 万トンと最高値を示した(図 4-3、表 4-1)。その後減少に転じて $2001\sim2005$ 年には 19 万トン前後で推移した後、2007 年には 30.2 万トンまで増加した。2007 年以降は緩やかな減少傾向にあり、2021 年は過去最低となる 10.4 万トンと推定された。

親魚量は 1980 年代には 7 万トン前後に留まっていたが、1991 年から 10 万トンを超え、 その後 1998 年のピーク (21.0 万トン) まで増加した (図 4-3、表 4-1)。その後親魚量は、 2002 年に 6.8 万トンまで減少した後、2007 年 (19.2 万トン) にかけて増加し、以後漸減して 2021 年には 4.6 万トンと推定された。

年齢別資源尾数は0~1歳魚が大半を占めた。2021年における資源尾数は0歳魚および2歳魚が前年よりも増加し、1歳魚は前年よりも減少した(図4-4、補足表2-2)。

年齢別資源重量は0歳魚が $36\sim65\%$ を占め、 $0\sim1$ 歳魚が大半を占めた。2021年における資源重量は $0\sim1$ 歳魚が前年よりも減少し、2歳魚では前年よりも増加した(図4-5)。

加入量は 1990 年代前半まで 240 億尾前後で推移したが、1995 年から 400 億尾を超え、1998 年に最高値 519 億尾を示した (図 4-6、表 4-1)。その後加入量は減少したが、2005 年と 2006 年には再び 400 億尾を超えた。以後漸減して 2007 年以降は 201 億~352 億尾で推移したが、2021 年は 2008 年以降で 2 番目に高い値である 318 億尾と推定された。

再生産成功率は変動が大きく、152~719 尾/kg の間で増減した。2021 年における再生産 成功率は689 尾/kg となり、1977 年以降2番目に高い値を示した(図4-6、表4-1)。

自然死亡係数 (M) を 0.5、1.0 (基準値)、1.5 と変化させた場合の資源量と親魚量の推定値を図 4-7 に示した。資源量は、M を 0.5 に仮定した場合には基準値の 65%となり、M を 1.5 に仮定した場合には 173%となった。

年齢別漁獲係数 (F) の経年変化を図 4-8 に示した。0 歳魚の F は増減を繰り返しながらも $0.2 \sim 0.7$ の間で推移し、2021 年は 0.5 と推定された。 $1 \sim 2$ 歳魚の F は $1977 \sim 2005$ 年にかけて $1.2 \sim 4.3$ の間で増減し、2006 年に最低値となる 0.7 を示した。その後 $1 \sim 2$ 歳魚の F は増加傾向にあり、2017 年に最高値となる 5.2 を示した。その後 $1 \sim 2$ 歳魚の F は 4.4 前後で推移し、2021 年は 4.6 と推定された。

漁獲割合は 1977 年以降継続的に 35%前後で推移し、2021 年は 39%となった(図 4-9)。

(4) 加入量当たり漁獲量 (YPR)、加入量当たり親魚量 (SPR) および現状の漁獲圧

選択率の影響を考慮して漁獲圧を比較するため、加入量あたり親魚量(SPR)を基準に、その漁獲圧が無かった場合との比較を行った。図 4-10 に年ごとに漁獲が無かったと仮定した場合の SPR に対する、漁獲があった場合の SPR の割合(%SPR)の推移を示した。%SPR は漁獲圧が低いほど大きな値となる。%SPR は $27\sim58\%$ の間で増減を繰り返し、2021 年は 33%となった。現状の漁獲圧として近年 3 年間($2019\sim2021$ 年)の平均 F 値から%SPR を算出すると 31%となった。

現状の漁獲圧に対する YPR と%SPR の関係を図 4-11 に示した。このとき F の選択率としては令和 3 年 9 月に開催された「管理基準値等に関する研究機関会議」において最大持続生産量 MSY を実現する F (Fmsy) の推定に用いた値(日野ほか 2021)を用いた。また、年齢別平均体重および成熟割合についても Fmsy 算出時の値を使用した。Fmsy は%SPR に換算すると 45%に相当する。現状の漁獲圧(F2019-2021)は Fmax や F40%SPR を上回り、F30%SPR を下回った。

(5) 再生產関係

親魚量(重量)と加入量(尾数)の関係(再生産関係)を図 4-12 に示した。上述の「管理基準値等に関する研究機関会議」により、本系群の再生産関係は、ホッケー・スティック型再生産関係式を適用することが提案された(日野ほか 2021)。ここで、再生産関係のパラメータ推定に使用するデータは、令和 2 (2020)年度の資源評価(黒田ほか 2021)による親魚量・加入量とし、最適化方法には最小二乗法を用いている。加入量の残差の自己相関を考慮している。再生産関係式の各パラメータを補足表 6-1 に示した。

(6) 現在の環境下において MSY を実現する水準

現在(1977年以降)の環境下において最大持続生産量 MSY を実現する親魚量(SBmsy) および MSY を実現する漁獲量として上記の「管理基準値等に関する研究機関会議」で推定された値(日野ほか 2021)を補足表 6-2 に示した。

(7) 資源の水準・動向および漁獲圧の水準

MSY を実現する親魚量と漁獲圧を基準にした神戸プロットを図 4-13 に示した。また、2021年の親魚量と漁獲圧の概要を補足表 6-3 に示した。本系群における 2021年の親魚量は MSY を実現する親魚量 (SBmsy) を下回っており、2021年の親魚量は SBmsy の 0.55 倍である。また、2021年の漁獲圧は、MSY を実現する漁獲圧 (Fmsy) を上回っており、2021年の漁獲圧は MSY を実現する漁獲圧の 2.08 倍である。なお、神戸プロットに示した漁獲圧の比 (F/Fmsy) とは、各年のFの選択率の下で Fmsy の漁獲圧を与えるFを%SPR 換算して求めた値と、各年のF値との比である。親魚量の動向は、近年 5年間 (2017~2021年)の推移から横ばいと判断された。本系群の親魚量は 1977年、1991~2001年、2003年、2005~2010年には SBmsy を上回っていたが、2011年以降は SBmsy を下回った。漁獲圧は 2011年以降、概ね Fmsy を上回った。

5. 資源評価のまとめ

資源量は 1994 年まで 17.0 万トン前後で推移したが、1995 年以降増加傾向を示して 1998 年に 42.6 万トンと最高値を示した。その後減少に転じて 2001~2005 年には 19.0 万トン前後で推移した後、2007 年には 30.2 万トンまで増加した。資源量は 2007 年以降の減少傾向にあり、2021 年は過去最低となる 10.4 万トンと推定されたが、加入量は 2008 年以降で 2 番目に高い値である 318 億尾と推定された。

6. その他

本系群の親魚量と加入量の関係性から、資源を安定して利用するためには、親魚量を一定以上に保つことが有効と考えられる。本系群では、0歳魚が漁獲物の多く大半を占めるため、また加入量は翌年および翌々年の親魚量に大きく影響するため、加入量変動のメカニズムの理解が重要である。最近約 10 年間のデータは逸脱しているものの、本系群の加入量は、全体として対馬暖流域の冬季表層水温と正の相関があることが経験的に明らかとなっている(黒田ほか 2021)。このため、水温が平年よりも低い年には 0歳魚を獲り控えるなど、低加入への対策が必要と考えられる。

対馬暖流域に分布するカタクチイワシは、中国と韓国によっても漁獲されているが、本資源評価では、カタクチイワシ対馬暖流系群を「日本海北部・西部から九州西岸に分布し、日本の漁船によって漁獲されている群」と定義しており、両国による漁獲量は考慮していない。日本の漁獲量が1977年以降3万~13万トンであるにも関わらず、それを上回る中国(5万~122万トン)と韓国(5万~29万トン)の漁獲量を考慮していない主な要因は、両国の漁獲量を我が国のものと同等の精度で入手できないこと、また体長組成や成長式・成熟年齢などの生物的情報が不明なまま漁獲量のみを資源評価に組み入れても、本評価の精度が向上する保証がないこと、などである。黄海に分布するカタクチイワシは、体型・体色・アニサ

キス科線虫の寄生頻度などが日本海西部や九州北西岸に分布するものとは大きく異なり、 対馬暖流系群とは別の系群と考えられる。また日本海中部の個体群と渤海・黄海の個体群に は遺伝的分化が見られたとの報告もある(Zhang et al. 2020)。そのため、中国の漁獲量を考 慮しないことが本系群の資源評価精度に与える影響はそれほど大きくないと想定される。

一方、韓国が漁獲している群については、その生物特性を日本周辺の群と比較検討した例がないため、韓国漁船の漁場が日本漁船の漁場と地理的に近いことを考慮すれば、この群が対馬暖流系群と同一の系群である可能性は否定できない。そのため、韓国の漁獲を考慮した場合の資源評価を合わせて行い、補足資料9に結果を掲載した。今後、韓国による漁獲を資源評価において考慮するためには、九州周辺海域に分布するカタクチイワシと韓国沿岸に分布する群との交流に関する生物学的・生態学的知見を蓄積する必要がある。

7. 引用文献

- Funamoto, T., I. Aoki and Y. Wada (2004) Reproductive characteristics of Japanese anchovy *Engraulis japonicus*, in two bays of Japan. Fish. Res., **70**, 71-81.
- Iversen, S. A., D. Zhu, A. Johannessen and R. Toresen (1993) Stock size, distribution and biology of anchovy in the Yellow Sea and East China Sea. Fish. Res., 16, 147-163.
- 韓国国立水産振興院 (2000) 韓国 EEZ 内における資源と生態. 314 pp.
- 黒田啓行・髙橋素光・依田真里・向草世香・佐々千由紀・日野晴彦 (2021) 令和 2 (2020) 年度カタクチイワシ対馬暖流系群の資源評価. 令和 2 年度我が国周辺水域の漁業資源 評価,水産庁・水産研究・教育機構.
- 日野晴彦・黒田啓行・向草世香・佐々千由紀・国松翔太 (2021) 令和 3 (2021) 年度カタクチ イワシ対馬暖流系群の管理基準値等に関する研究機関会議資料. 水産研究・教育機構.
- 落合 明・田中 克 (1986)「新版魚類学(下)」. 恒星社厚生閣, 東京, 1140 pp.
- Ohshimo, S. (1996) Acoustic estimation of biomass and school character of the Japanese anchovy *Engraulis japonicus* in the East China Sea and the Yellow Sea. Fish. Sci., **62**, 344-349.
- Ohshimo, S. (2004) Spatial distribution and biomass of pelagic fish in the East China Sea in summer, based on acoustic surveys from 1997 to 2001. Fish. Sci., **70**, 389-400.
- 大下誠二 (2009) 九州北西岸におけるカタクチイワシの生物特性に関する研究. 日本海ブロック試験研究集録, 44, 51-60.
- 大下誠二・田中寛繁 (2009) 平成 20 年度カタクチイワシ対馬暖流系群の資源評価. 平成 20 年度我が国周辺水域の漁業資源評価, 水産庁・水産総合研究センター, 751-768.
- 志村 健・山本 潤・森本晴之・大下誠二・下山俊一・桜井泰憲 (2008) 春季の日本海鳥取 沖におけるカタクチイワシの成熟と産卵. 水産海洋研究, 72, 101-106.
- Tanaka, H., I. Aoki and S. Ohshimo (2006) Feeding habits and gill raker morphology of three planktivorous pelagic fish species off the coast of northern and western Kyushu in summer. J. Fish Biol., **68**, 1041-1061.
- 内田恵太郎・道津善衛 (1958) 第1篇 対馬暖流水域の表層に現れる魚卵・稚魚概説. 対馬暖 流開発調査報告書 第2輯, 水産庁, 3-65.
- Zhang, B. D., Y. L. Li, D. X. Xue and J. X. Liu (2020) Population genomics reveals shallow genetic structure in a connected and ecologically important fish from the northwestern Pacific Ocean.

Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00374

(執筆者:日野晴彦、黒田啓行、向草世香、佐々千由紀、国松翔太)

図 2-1. カタクチイワシ対馬暖流系群の分布域

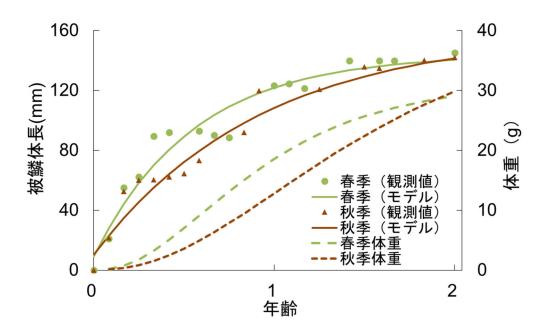


図 2-2. カタクチイワシ対馬暖流系群の成長様式

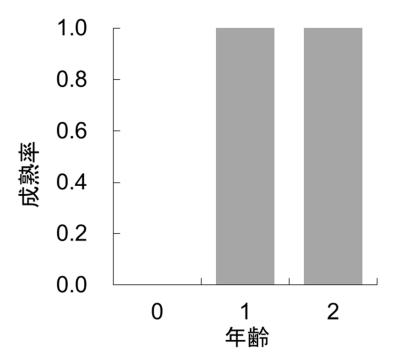


図 2-3. 年齢別成熟率

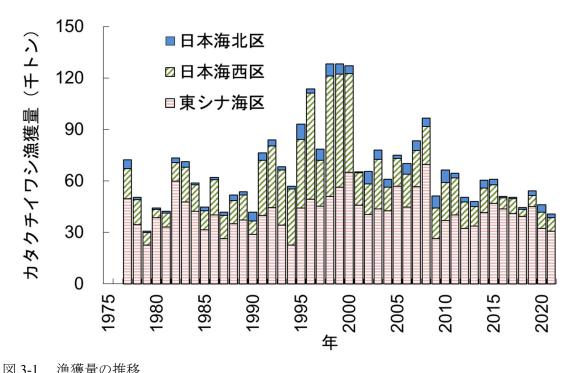


図 3-1. 漁獲量の推移

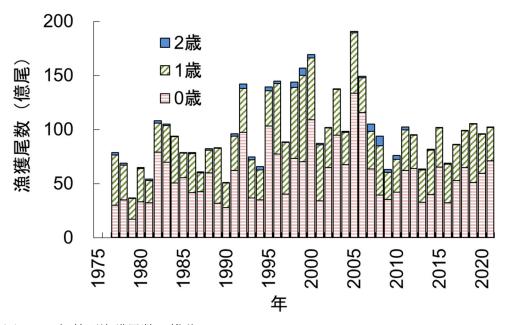


図 3-2. 年齢別漁獲尾数の推移

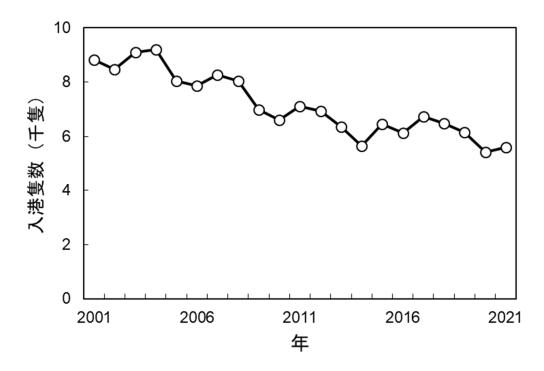


図 3-3. 長崎県における中・小型まき網の漁獲努力量(入港隻数)の推移

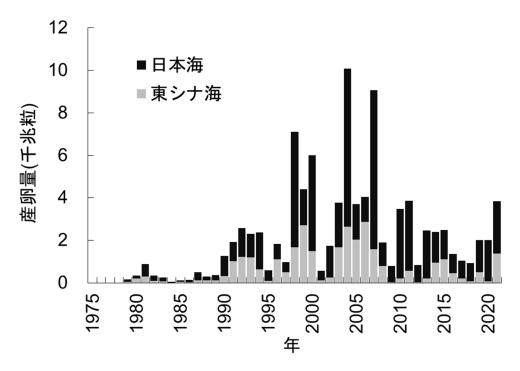


図 4-1. 産卵量の推移

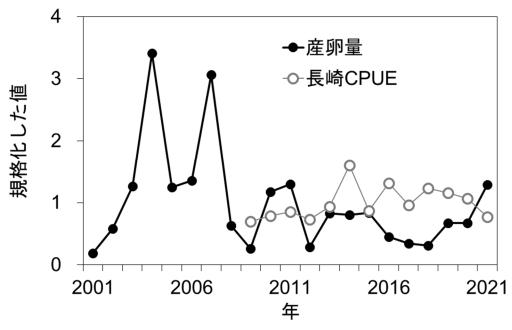


図 4-2. チューニング指標値の推移

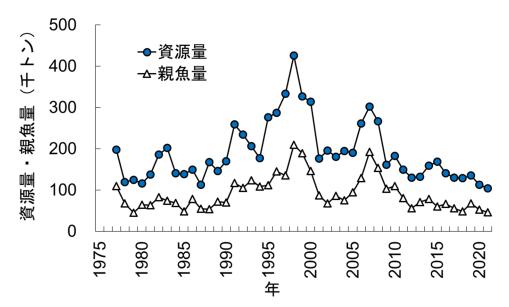


図 4-3. 資源量と親魚量の推移

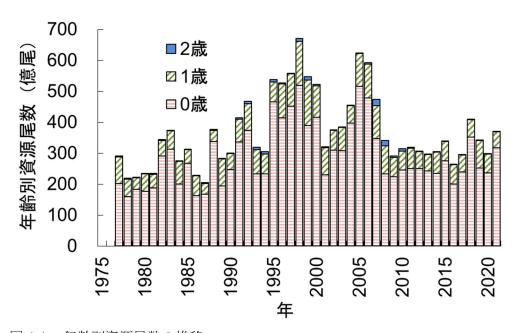


図 4-4. 年齢別資源尾数の推移

図 4-5. 年齢別資源重量の推移

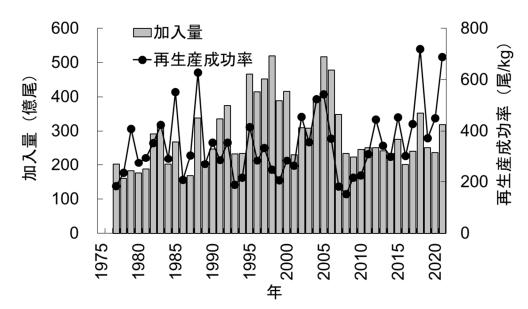


図 4-6. 加入量と再生産成功率の推移

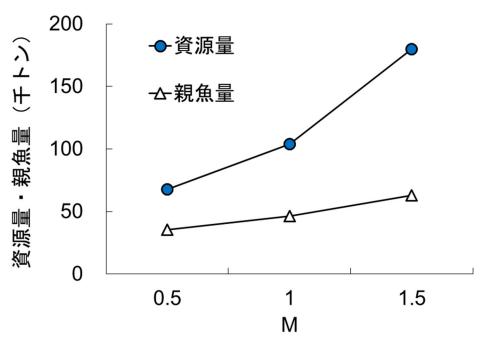


図 4-7. 資源量と親魚量に対する自然死亡係数 M の影響

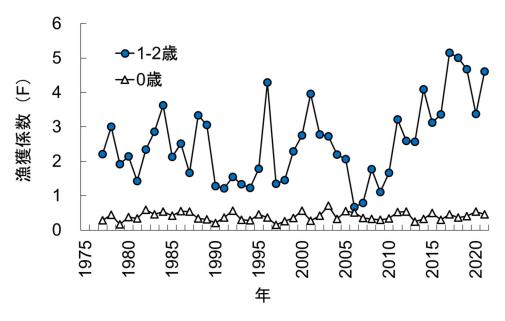


図 4-8. 年齢別漁獲係数 F の推移

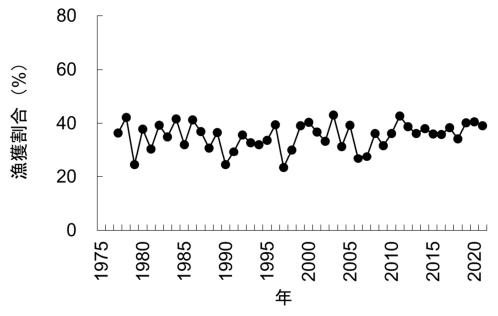


図 4-9. 漁獲割合の推移

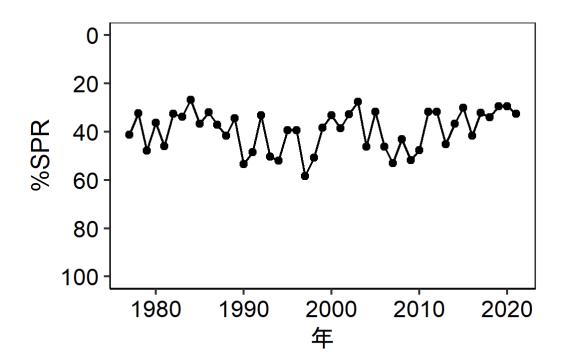


図 4-10. 各年の F における%SPR の推移

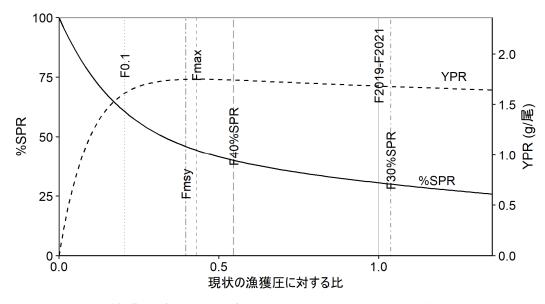
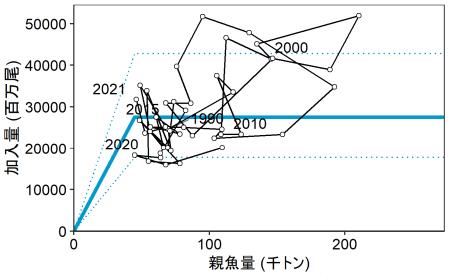



図 4-11. 現状の漁獲圧 (F2019-2021) に対する YPR と%SPR の関係

関数形: HS, 自己相関: 1, 最適化法L2, AICc: 17.95

図 4-12. 親魚量と加入量の関係 (再生産関係)

令和3年9月に開催された「管理基準値等に関する研究機関会議」(日野ほか2021)で提案された再生産関係式(青実線)。図中の再生産関係式(青実線)の上下の点線は、仮定されている再生産関係において観察データの90%が含まれると推定される範囲である。実線と白抜きの丸印で示したのは令和4年度資源評価で得られた再生産関係のプロット(1977~2021年)。

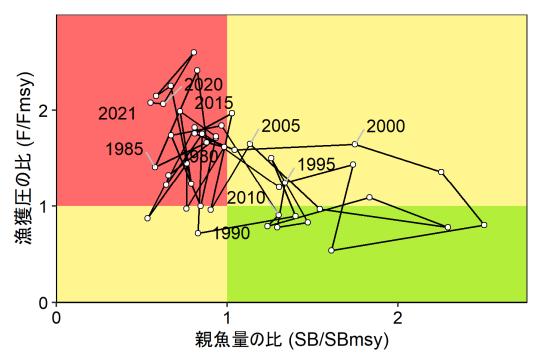
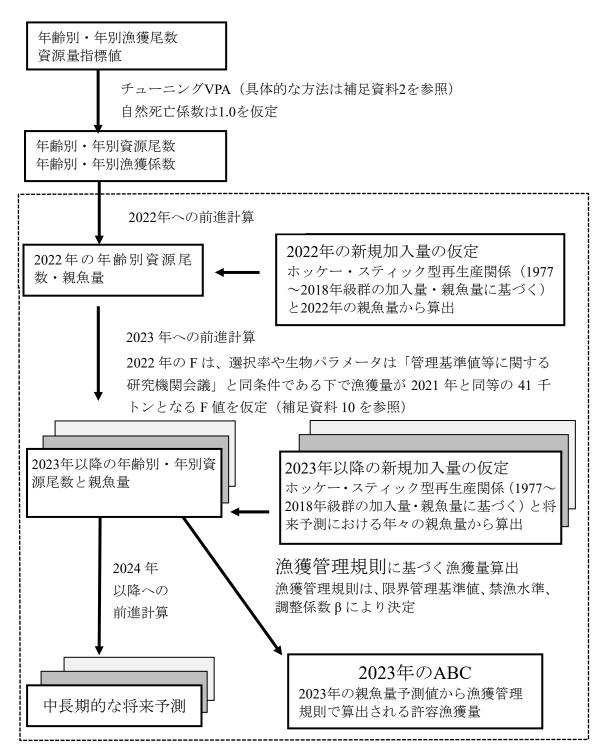


図 4-13. 最大持続生産量 MSY を実現する親魚量 (SBmsy) と MSY を実現する漁獲圧 (Fmsy) に対する、1977~2021 年における親魚量および漁獲圧の関係(神戸プロット)

表 3-1. カタクチイワシ (日本、韓国、中国) とシラス (日本) の漁獲量 (千トン)

年	日本海	日本海	東シナ海区	対馬暖流系群	韓国	中国	シラス
+	北区	西区	果と 戸 博臣	合計	四年	十四	277
1977	5.3	17.5	49.5	72.3	140.8		4.9
1978	1.4	14.5	34.5	50.4	183.2		5.1
1979	0.9	7.3	22.5	30.7	171.5		6.5
1980	0.8	4.9	38.5	44.2	169.7		4.5
1981	1.1	8.0	33.1	42.2	184.4		4.0
1982	2.7	10.8	59.9	73.3	162.3		3.8
1983	3.1	20.2	47.8	71.1	131.9		3.1
1984	1.2	15.3	42.3	58.9	155.1		2.1
1985	2.0	11.1	31.5	44.6	143.5		2.5
1986	1.3	20.4	40.2	61.9	201.6		3.5
1987	2.0	13.3	26.5	41.8	167.7		5.7
1988	3.3	13.4	35.0	51.7	126.1		5.9
1989	2.0	14.6	37.1	53.7	131.9		6.5
1990	5.1	8.0	28.8	41.8	130.2	54.1	6.5
1991	4.5	32.1	39.9	76.4	124.5	113.1	7.1
1992	3.4	36.0	44.3	83.8	116.9	192.7	6.0
1993	2.0	32.0	34.2	68.2	249.2	557.2	6.0
1994	1.5	32.8	22.5	56.8	193.4	439.0	7.1
1995	9.0	40.0	44.2	93.1	230.7	489.1	6.0
1996	2.5	61.8	49.2	113.5	237.1	671.4	5.7
1997	6.5	26.6	45.4	78.4	230.9	1,110.9	6.5
1998	7.1	70.3	50.9	128.3	249.5	1,217.2	6.7
1999	5.9	65.8	56.4	128.0	238.9	951.4	11.1
2000	4.8	57.5	64.9	127.2	201.2	980.5	12.1

日本海北区:青森県〜石川県、日本海西区:福井県〜山口県、東シナ海区:福岡県〜鹿児島県。ただし、日本海北区の漁獲量は属地統計(新潟県:1995〜2000年、石川県:2002年以降)。


表 3-1. カタクチイワシ (日本、韓国、中国) とシラス (日本) の漁獲量 (千トン) (つづき)

年	日本海北区	日本海西区	東シナ海区	対馬暖流系群 合計	韓国	中国	シラス
2001	0.4	18.9	45.9	65.2	273.9	1,075.6	6.7
2002	7.4	17.7	40.4	65.5	236.3	998.1	4.6
2003	5.3	29.0	43.6	77.9	250.1	1,106.5	5.2
2004	4.8	13.6	42.7	61.0	196.6	935.4	8.8
2005	2.0	16.2	56.9	75.1	249.0	882.6	9.9
2006	6.4	19.0	44.8	70.2	265.3	826.8	8.2
2007	5.8	20.9	56.7	83.4	221.1	806.5	9.3
2008	4.9	22.0	69.7	96.6	261.5	658.7	7.2
2009	6.9	18.1	26.2	51.2	203.7	521.9	5.9
2010	7.4	22.0	36.9	66.4	249.6	598.1	7.1
2011	2.7	21.5	40.3	64.4	292.7	766.6	4.7
2012	2.7	15.4	32.2	50.3	222.0	824.2	4.2
2013	2.8	11.3	33.8	47.9	209.1	866.8	4.3
2014	4.6	14.3	41.5	60.5	221.2	926.5	4.1
2015	3.5	10.6	47.0	61.2	211.6	955.8	5.0
2016	0.8	6.3	43.7	50.8	141.0	816.2	4.8
2017	0.7	8.5	41.1	50.3	210.9	703.7	4.6
2018	1.0	4.1	39.2	44.4	188.5	658.4	3.9
2019	2.9	6.4	45.0	54.3	171.7	625.4	2.7
2020	4.4	9.4	32.4	46.1	216.8	609.9	3.7
2021	2.2	7.7	30.7	40.6	143.4		2.5

表 4-1. チューニング VPA の結果

表 4-1.	ナューニ	ンク VPA 0	り結果				
年	資源量	親魚量	加入量	再生産成功率	漁獲割合	%SPR	F/Fmsy
	(千トン)	(千トン)	(千万尾)	(尾/kg)	(%)		
1977	198	109	2,014	184	37	41.4	1.20
1978	120	68	1,596	235	42	32.4	1.82
1979	125	45	1,827	407	25	48.0	0.87
1980	117	64	1,764	275	38	36.3	1.45
1981	138	64	1,875	294	31	46.1	0.97
1982	186	82	2,914	353	39	32.7	1.62
1983	203	74	3,124	423	35	34.0	1.66
1984	141	69	2,012	291	42	26.8	2.41
1985	139	48	2,674	552	32	36.9	1.41
1986	150	78	1,625	207	41	32.0	1.71
1987	113	55	1,680	305	37	37.3	1.33
1988	168	54	3,385	627	31	41.7	1.22
1989	146	72	1,935	270	37	34.5	1.75
1990	170	70	2,467	355	25	53.4	0.72
1991	259	118	3,356	286	29	48.5	0.90
1992	234	106	3,744	355	36	33.2	1.50
1993	207	124	2,333	189	33	50.3	0.83
1994	177	108	2,339	216	32	52.0	0.78
1995	276	112	4,657	414	34	39.4	1.25
1996	287	146	4,146	284	40	39.5	1.43
1997	333	135	4,514	334	24	58.5	0.54
1998	426	210	5,189	247	30	50.8	0.80
1999	327	189	3,890	206	39	38.4	1.36
2000	314	147	4,162	284	40	33.2	1.65
2001	177	88	2,308	264	37	38.6	1.59
2002	196	68	3,091	455	33	32.8	1.76
2003	180	86	3,081	357	43	27.8	1.97
2004	195	76	3,972	524	31	46.3	0.96
2005	191	95	5,165	544	39	31.8	1.65
2006	262	129	4,782	369	27	46.4	0.97
2007	302	192	3,480	181	28	53.1	0.78
2008	266	154	2,337	152	36	43.2	1.09
2009	161	104	2,242	216	32	51.9	0.79
2010	183	109	2,455	225	36	47.8	0.91
2011	150	81	2,508	309	43	31.9	1.84
2012	130	56	2,512	445	39	31.8	1.74
2013	132	71	2,421	342	36	45.3	1.00
2014	159	78	2,346	300	38	36.8	1.73
2015	169	61	2,751	453	36	30.2	1.99
2016	141	66	2,010	303	36	41.8	1.23
2017	130	56	2,402	427	39	32.3	2.25
2018	130	49	3,519	719	34	34.2	2.15
2019	135	68	2,513	372	40	29.5	2.60
2020	113	53	2,363	450	41	29.6	2.06
2021	104	46	3,180	689	39	32.7	2.08

補足資料 1 資源評価の流れ

※ 点線枠内は資源管理方針に関する検討会における管理基準値や漁獲管理規則等の 議論をふまえて作成される。(http://www.fra.affrc.go.jp/shigen_hyoka/SCmeeting/2019-1/index.html)

補足資料 2 計算方法

(1) 資源計算方法

カタクチイワシは産卵期間が長いため、1月1日に加齢するとした場合、例えば秋季発生群は数ヶ月後に1歳となる。このことを考慮し、大下(2009)の成長様式を参考に体長―年齢キーを月別海域別(東シナ海・日本海)に作成し、体長組成から年齢組成を得た。これに加えて、体長―体重関係を用いて年齢別の体重組成を求め、漁獲重量で引き延ばすことによって年齢別年別漁獲尾数を推定した。なお、漁業の選択性の違いを年齢別漁獲尾数により正確に反映させるため、日本海における体長組成および漁獲は山口県~鳥取県と兵庫県~青森県に分けて集計した。以上の年齢別年別漁獲尾数をもとに Pope の近似式からチューニング VPA を行い、資源量を推定した。なお、寿命は3年として計算した。計算にはRパッケージ frasyr (ver2.2.2.0) を使用した。計算方法は次のとおりである。

1. Pope の近似式を用いた資源尾数の計算(ステップ1)

最近年(2021年)を除く2020年以前の0、1歳魚の年齢別年別資源尾数を次式1により計算した。

$$N_{a,y} = N_{a+1,y+1} \times \exp(M) + C_{a,y} \times \exp\left(\frac{M}{2}\right)$$
 (1)

ここで、Na,y は y 年における a 歳魚の資源尾数、Ca,y は y 年における a 歳魚の漁獲尾数、M は自然死亡係数(1.0)である。

ただし、最高齢 (2歳) および最近年の各年齢の資源尾数は、漁獲係数 F を用いた次式 2 により計算した。

$$N_{a,y} = \frac{C_{a,y} \times \exp\left(\frac{M}{2}\right)}{1 - \exp(-F_{a,y})}$$
(2)

最近年を除き、0歳魚と1歳魚の資源尾数を次式3により計算した。

$$F_{a,y} = -\ln\left\{1 - \frac{C_{a,y} \times \exp\left(\frac{M}{2}\right)}{N_{a,y}}\right\}$$
(3)

2歳魚のFは、1歳魚のFと同一とした。また、最近年の0歳魚と1歳魚のFは、過去3年間(2018~2020年)の同一年齢魚のFの平均値とし、式1を用いて資源尾数を計算した。最近年の2歳魚のFは1歳魚と同一とした。その後ステップ2の方法によりさらに最近年のFを調整した。

2. 最近年のFの調整 (ステップ2)

資源量指標値によりターミナル F をチューニングによって探索的に求めた。ステップ 2 ではステップ 1 で得られた年齢別漁獲係数から計算される選択率を、ターミナル F の選択率と仮定し、選択率に乗じる F の大きさをチューニングにより推定した。

Fのチューニングに用いた資源量指標値として、産卵量と長崎 CPUE を用いた(補足表 2-1)。産卵量は、日本海(3~6月)および東シナ海(3~4月)において、ノルパックネットにより採集されたカタクチイワシの卵数の合計値である(図 4-1)。長崎 CPUE は、0 歳魚の資源量の指標値とするため、例年 1 歳魚以上が比較的多く漁獲される 1~3 月を除いた 4~12 月の漁獲データを解析に用いた(補足資料 8)。

コホート解析より得られる親魚量が産卵量に、0歳魚の資源量が長崎 CPUE に最もよく適合するようなターミナル F を最尤法により推定した。以上 2 種の資源量指標値について、最小化させる負の対数尤度を以下のように定義した(Hashimoto et al. 2018)。

$$-\ln L = \sum_{f} \sum_{\gamma} \frac{\left[\ln I_{f,\gamma} - \left(b_{f} \ln B_{f,\gamma} + \ln q_{f}\right)\right]^{2}}{2\sigma_{f}^{2}} - \ln\left(\frac{1}{\sqrt{2\pi}\sigma_{f}}\right)$$
(4)

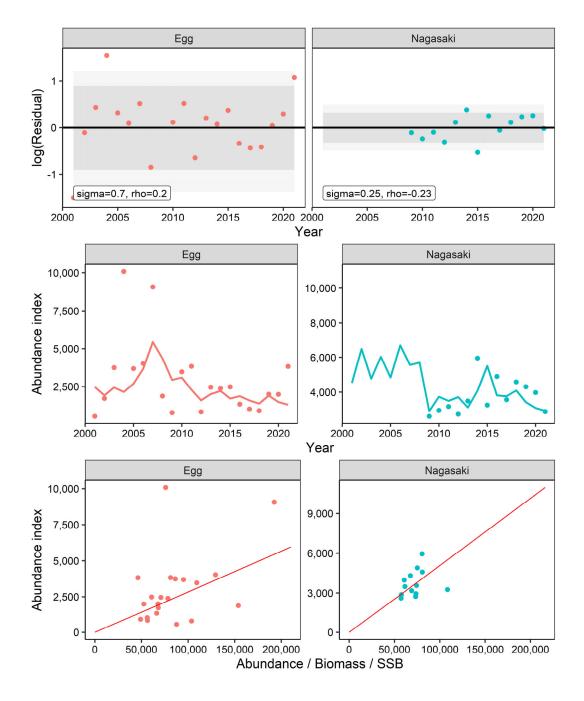
ここで、 $I_{f,y}$ は y 年における指標値 f(1:産卵量、2:長崎 CPUE)、 $B_{f,y}$ は y 年における指標値 f に適用する資源量(1:親魚量、2:0 歳魚の資源量)、 q_f 、 b_f 、 σ_f は推定パラメータ(ターミナル F と同時推定)である。

また、Ify と Bfyには、以下のべき乗式で表される関係があることを仮定した。

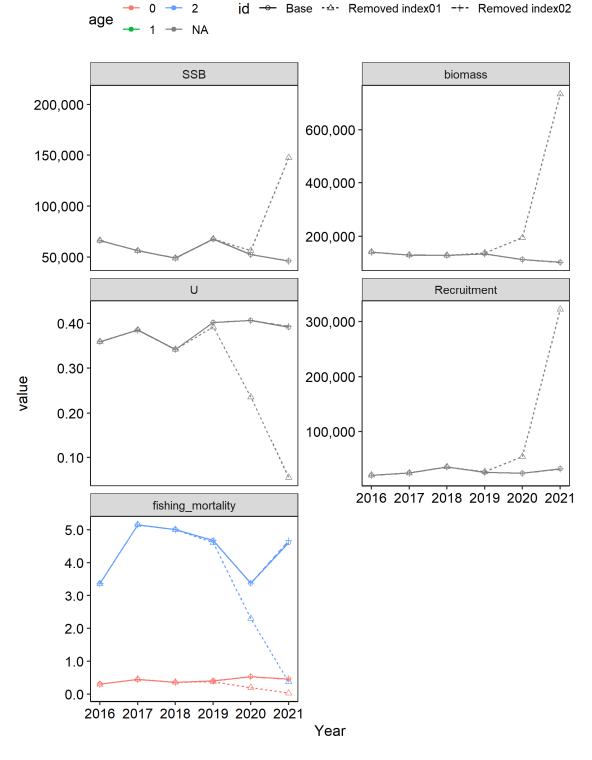
$$I_{f,y} = q_f B_{f,y}^{b_f} \tag{5}$$

ただし、本資源評価では b_fはいずれの指標値に対しても1に固定した。

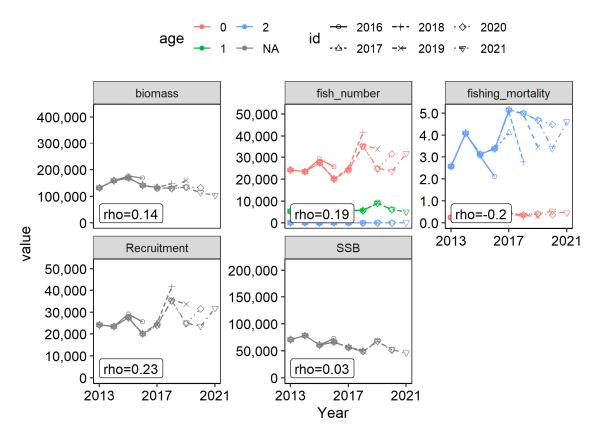
指標値と適合させる期間は、産卵量は 2001 年以降、長崎 CPUE は 2009 年以降とした。この条件で(式 4)を最小化するような F を探索的に求めた結果、 $F_{0,2021}$ =0.46、 $F_{1,2021}$ =4.62、 $F_{2,2021}$ =4.62 と推定された。またその他のパラメータは q_1 =28.3、 q_2 =50.7、 σ_1 =0.70、 σ_2 =0.25 であった。


「資源評価におけるモデル診断の手順と診断結果の提供指針(令和4年度)FRA-SA2022-ABCWG02-03」に従って、本系群の評価に用いたVPAの統計学的妥当性や仮定に対する頑健性について診断した。指標値の観測値とモデルの予測値との残差を補足図2-1に示した。産卵量は長崎CPUEに比べて年変動が大きく、VPAの結果と適合しない年が生じるため残差が大きく、指標値の重みが小さかかった。ジャックナイフ解析の結果から、長崎CPUE (index01)を外すと2020年以降の資源量と親魚量、加入量が高めに推定されることが分かった(補足図2-2)。

5年間のレトロスペクティブ解析により、データの追加・更新が行われることでFの値や 資源量推定値に生じる変化を確認した(補足図 2-3)。傾向として、資源量、資源尾数、加 入量は下方修正が続き、漁獲係数は上方修正が続いたが、レトロスペクティブバイアス (Mohn's ρ、Mohn 1999) は、資源量が 0.14、資源尾数が 0.19、漁獲係数が-0.20、加入尾数 が 0.23、親魚量が 0.03 と極端に大きくはなかった。


引用文献

Hashimoto, M., H. Okamura, M. Ichinokawa, K. Hiramatsu and T. Yamakawa (2018) Impacts of the nonlinear relationship between abundance and its index in a tuned virtual population analysis. Fish. Sci. **84**, 335-347.


Mohn, R. (1999) The retrospective problem in sequential population analysis: an investigation using cod fishery and simulated data. ICES J. Mar. Sci., **56**, 473-488.

補足図 2-1. (上) 指標値の観測値とモデルの期待値の差を示す残差プロット(中下) 指標値の観測値(丸印) とモデルの予測値(実線)

補足図 2-2. チューニング VPA のモデル診断 親魚量、資源量、漁獲割合、加入尾数、漁獲係数のジャックナイフ解析 指標値 (index 01:長崎 CPUE、index 02:産卵量)

補足図 2-3. 5年間のレトロスペクティブ解析 (左上から、資源量、資源尾数、漁獲係数、加入尾数、親魚量)。

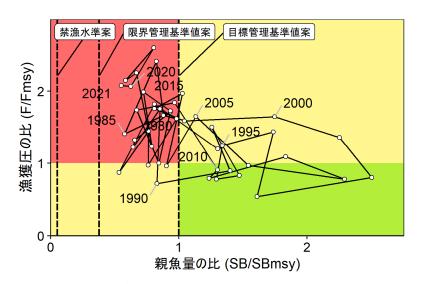
補足表 2-1. チューニング指標値

元叔21. /	間た次と1: ケムー・マン15小値										
年	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
産卵量(兆個)	555	1,728	3,748	10,084	3,688	4,024	9,072	1,880	789	3,469	3,835
長崎 CPUE									2,612	2,947	3,172
年	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	
産卵量(兆個)	842	2,458	2,391	2,484	1,345	1,032	918	2,000	1,991	3,824	
長崎 CPUE	2,734	3,490	5,949	3,254	4,896	3,563	4,582	4,309	3,974	2,876	

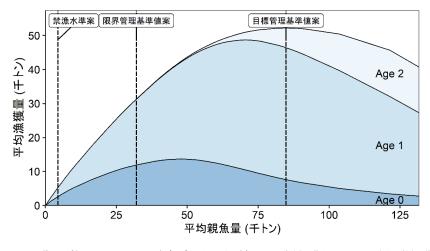
補足表 2-2. チューニング VPA 結果の詳細

<u></u>	年齢別漁	嬳尾数(百	万尾)	平均体重(g)			
年	0 歳	1歳	2歳	0 歳	1歳	2 歳	
1977	3,009	4,643	228	4.4	11.2	31.2	
1978	3,486	3,220	200	3.2	10.3	30.3	
1979	1,698	1,945	52	4.4	11.1	31.1	
1980	3,330	3,046	109	3.0	10.1	31.7	
1981	3,239	2,058	114	4.0	12.6	30.2	
1982	7,904	2,704	217	3.6	14.2	31.7	
1983	6,996	3,389	100	4.1	11.6	30.1	
1984	5,044	4,281	73	3.6	9.0	30.9	
1985	5,526	2,319	38	3.4	10.7	29.1	
1986	4,142	3,617	106	4.4	11.2	29.1	
1987	4,271	1,706	95	3.4	14.2	30.5	
1988	5,996	2,101	140	3.4	13.3	26.7	
1989	3,174	5,096	27	3.9	8.0	26.9	
1990	2,762	2,280	67	4.1	12.5	30.9	
1991	6,234	3,153	225	4.2	13.9	28.2	
1992	9,721	4,086	387	3.4	9.5	29.5	
1993	3,662	3,514	300	3.6	13.3	28.0	
1994	3,515	2,729	329	2.9	13.6	28.7	
1995	10,327	3,270	346	3.5	14.0	31.7	
1996	7,730	6,502	238	3.4	12.5	26.1	
1997	4,042	4,745	25	4.4	12.7	25.3	
1998	7,311	6,582	469	4.2	12.9	27.6	
1999	7,022	7,990	662	3.6	10.5	29.1	
2000	10,901	5,710	310	4.0	13.1	28.3	
2001	3,384	5,177	139	3.9	9.4	25.6	
2002	6,479	3,663	35	4.1	10.3	31.7	
2003	9,478	4,218	83	3.1	11.1	26.3	
2004	6,732	3,010	96	3.0	12.8	23.5	
2005	13,377	5,577	122	1.8	8.5	24.0	
2006	11,581	3,210	145	2.8	10.7	25.8	
2007	6,345	3,484	678	3.2	12.8	27.7	
2008	3,963	4,509	894	4.8	11.4	29.0	
2009	3,544	2,515	227	2.6	14.0	30.5	
2010	4,228	2,997	370	3.0	14.5	27.5	
2011	6,200	3,767	248	2.7	10.8	27.0	
2012	6,387	3,069	53	2.9	9.9	25.7	
2013	3,256	3,005	84	2.5	12.4	27.9	
2014	3,973	4,134	90	3.4	10.7	28.8	
2015	6,542	3,607	25	3.9	9.6	29.0	
2016	3,206	3,602	59	3.7	10.4	23.0	
2017	5,300	3,286	47	3.1	9.9	26.5	
2018	6,489	3,387	7	2.3	8.7	24.7	
2019	5,085	5,414	8	2.7	7.5	26.1	
2020	5,945	3,610	18	2.6	8.4	23.9	
2021	7,115	3,055	46	1.8	8.7	22.5	

補足表 2-2. チューニング VPA 結果の詳細 (つづき)


左	資源尾数	(百万尾)		漁獲係数		
年	0 歳	1歳	2 歳	0 歳	1歳	2歳
1977	20,141	8,598	422	0.28	2.21	2.21
1978	15,965	5,585	347	0.45	3.01	3.01
1979	18,272	3,759	101	0.17	1.92	1.92
1980	17,635	5,692	203	0.37	2.14	2.14
1981	18,751	4,468	247	0.34	1.42	1.42
1982	29,138	4,933	396	0.59	2.34	2.34
1983	31,245	5,925	175	0.46	2.86	2.86
1984	20,119	7,251	124	0.53	3.63	3.63
1985	26,739	4,342	71	0.42	2.12	2.12
1986	16,248	6,485	191	0.55	2.52	2.52
1987	16,802	3,465	192	0.54	1.67	1.67
1988	33,845	3,590	240	0.35	3.34	3.34
1989	19,348	8,814	47	0.32	3.06	3.06
1990	24,672	5,193	152	0.20	1.29	1.29
1991	33,559	7,401	527	0.37	1.21	1.21
1992	37,442	8,564	810	0.56	1.54	1.54
1993	23,328	7,878	672	0.30	1.33	1.33
1994	23,391	6,361	767	0.28	1.23	1.23
1995	46,571	6,473	685	0.46	1.79	1.79
1996	41,462	10,869	398	0.37	4.29	4.29
1997	45,136	10,565	55	0.16	1.35	1.35
1998	51,892	14,153	1,009	0.26	1.46	1.46
1999	38,900	14,656	1,215	0.35	2.29	2.29
2000	41,621	10,052	546	0.57	2.76	2.76
2001	23,075	8,700	234	0.28	3.96	3.96
2002	30,908	6,436	61	0.42	2.79	2.79
2003	30,814	7,441	146	0.71	2.73	2.73
2004	39,723	5,587	179	0.33	2.19	2.19
2005	51,648	10,530	230	0.56	2.06	2.06
2006	47,820	10,887	491	0.51	0.67	0.67
2007	34,800	10,568	2,058	0.36	0.78	0.78
2008	23,366	8,954	1,775	0.33	1.77	1.77
2009	22,422	6,192	559	0.30	1.11	1.11
2010	24,554	6,099	752	0.33	1.66	1.66
2011	25,082	6,469	426	0.52	3.22	3.22
2012	25,118	5,467	95	0.54	2.60	2.60
2013	24,208	5,367	150	0.25	2.57	2.57
2014	23,462	6,931	152	0.33	4.10	4.10
2015	27,506	6,221	42	0.50	3.12	3.12
2016	20,099	6,151	101	0.31	3.37	3.37
2017	24,021	5,449	78	0.45	5.15	5.15
2018	35,190	5,622	12	0.36	5.00	5.00
2019	25,131	9,010	14	0.41	4.68	4.68
2020	23,628	6,161	31	0.54	3.38	3.38
2021	31,796	5,086	77	0.46	4.62	4.62

補足資料3 管理基準値案と禁漁水準案等


令和 3 年 9 月に開催された「管理基準値等に関する研究機関会議」により、目標管理基準値 (SBtarget) には MSY 水準における親魚量 (SBmsy: 84 千トン)、限界管理基準値 (SBlimit) には MSY の 60%が得られる親魚量 (SB0.6msy: 32 千トン)、禁漁水準 (SBban) には MSY の 10%が得られる親魚量 (SB0.1msy: 4 千トン)を用いることが提案されている (日野ほか 2021, 補足表 6-2)。

目標管理基準値案と、MSY を実現する漁獲圧(F)を基準にした神戸プロットを補足図 3-1 に示す。コホート解析により得られた 2021 年の親魚量(SB2021:46 千トン)は目標管理基準値案を下回るが、限界管理基準値案および禁漁水準案は上回る。本系群における 2011 年以降の漁獲圧は、MSY を実現する漁獲圧を概ね上回っていたと判断される。

平衡状態における平均親魚量と年齢別平均漁獲量との関係を補足図 3-2 に示した。平均親 魚量が限界管理基準値以下では 0 歳魚および 1 歳魚がほとんどを占めている。しかし、親 魚量が増加するにつれて高齢魚の比率が高くなる傾向がみられる。

補足図 3-1. 管理基準値案と親魚量・漁獲圧との関係(神戸プロット)

補足図 3-2. 平衡状態における平均親魚量と年齢別平均漁獲量との関係(漁獲量曲線)

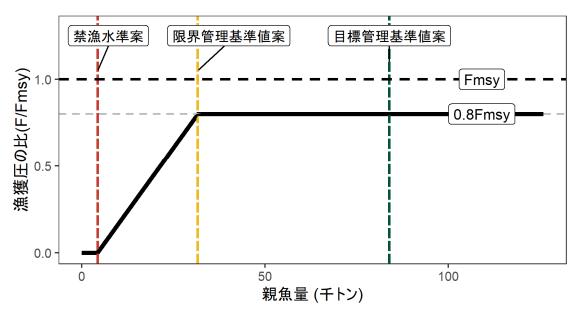
補足資料 4 漁獲管理規則案に対応した将来予測

(1) 将来予測の設定

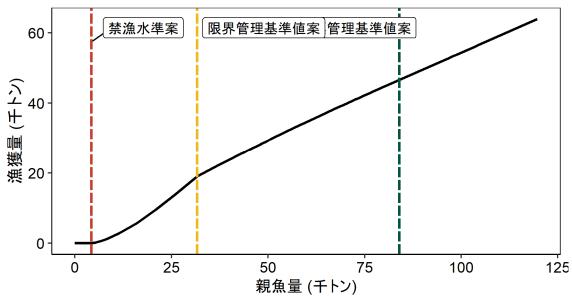
資源評価で推定した 2021 年の資源量から、コホート解析の前進法を用いて 2022~2053 年までの将来予測計算を行った(補足資料 5)。将来予測における加入量は、各年の親魚量から予測される値を再生産関係式から与えた。加入量の不確実性として、対数正規分布に従う誤差を仮定し、10,000 回の繰り返し計算を行った。2022 年の漁獲量は、直近の漁況を踏まえて 2021 年の値(41 千トン)を仮定した(補足資料 10)。現状の漁獲圧は、管理基準値案を算出した時と同じ選択率や生物パラメータ(平均体重等)の条件下で、今年度評価における 2019~2021 年の漁獲圧に対応する%SPR を与える F 値とした。2023 年以降の漁獲圧には、各年に予測される親魚量をもとに下記の漁獲管理規則案で定められる漁獲圧を用いた。

(2) 漁獲管理規則案

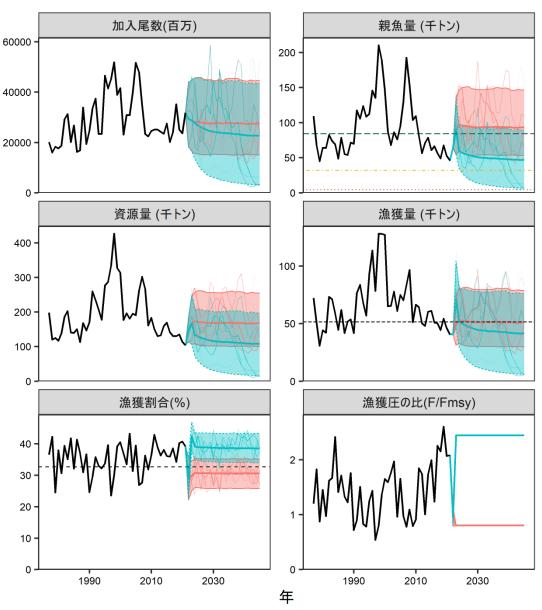
漁獲管理規則案は、目標管理基準値案以上に親魚量を維持・回復する達成確率を勘案して、親魚量に対応した漁獲圧 (F) 等を定めたものである。「漁獲管理規則および ABC 算定のための基本指針」では、親魚量が限界管理基準値案を下回った場合には禁漁水準案まで直線的に漁獲圧を削減するとともに、親魚量が限界管理基準値以上にある場合には Fmsy に調整係数 β を乗じた値を漁獲圧の上限とするものを提示している。補足図 4-1 に本系群の「管理基準値等に関する研究機関会議」により提案された漁獲管理規則を示した。ここでは例として調整係数 β を 0-8 とした場合を示した。なお、研究機関会議提案では「 β が 0-8 以下であれば、10 年後に目標管理基準値案を 50%以上の確率で上回ると推定される」とされている。


(3) 2023 年の予測値

漁獲管理規則に基づき試算された 2023 年の平均漁獲量は β を 0.8 とした場合には 50 千トン、 β を 1.0 とした場合には 55 千トンであった(補足表 6-4)。2023 年に予測される親魚量は、いずれの繰り返し計算でも限界管理基準値を上回り、平均 90 千トンと見込まれた。


(4) 2024 年以降の予測

2024 年以降も含めた将来予測の結果を補足図 4-2 および補足表 4-1、4-2 に示した。漁獲管理規則案に基づく管理を 10 年間継続した場合、2033 年の親魚量の予測値は β を 0.8 とした場合には 94 千トン (90%予測区間は 54 千~149 千トン)であり、 β を 1.0 とした場合には 85 千トン (90%予測区間は 47 千~135 千トン)である (補足表 6-5)。予測値が目標管理基準値案を上回る確率は β が 0.9 以下で 50%を上回る。現状の漁獲圧 (F2019-2021)を継続した場合の 2033 年の親魚量の予測値は 50 千トン (90%予測区間は 11 千~92 千トン)であり目標管理基準値案を上回る確率は 76%である。



補足図 4-1. 漁獲管理規則案 (β=0.8 の場合) (a) 縦軸を漁獲圧にした場合 (b) 縦軸を漁獲 量にした場合

(塗り:5-95%予測区間, 太い実線: 平均値, 細い実線: シミュレーションの1例)

補足図 4-2. 漁獲管理規則案を用いた将来予測(赤線)と現状の漁獲圧で漁獲を続けた場合の 将来予測(緑色)

太実線は平均値、網掛けはシミュレーション結果の90%が含まれる90%予測区間、細線は5通りの将来予測の例示である。親魚量の図の緑破線は目標管理基準値案、黄点線は限界管理基準値案、赤点線は禁漁水準案を示す。漁獲割合の図の破線はUmsyを示す。調整係数β=0.8とする一定の漁獲圧で漁獲した結果を用いた。

補足表 4-1. 将来の親魚量が目標・限界管理基準値案を上回る確率

a) 目標管理基準値案を上回る確率 (%)

β	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2043	2053
1.0	0	0	55	52	48	46	46	46	45	44	44	45	45	44	44
0.9	0	0	55	59	55	53	52	52	51	50	50	51	51	51	50
0.8	0	0	55	65	62	60	59	59	58	58	57	58	58	57	57
0.7	0	0	55	72	69	67	67	67	66	65	65	65	65	65	65
0.6	0	0	55	79	77	75	74	74	73	73	73	74	73	72	73
0.5	0	0	55	86	84	83	82	82	81	80	81	81	81	80	81
0.4	0	0	55	91	90	89	88	88	88	87	88	88	88	87	87
0.3	0	0	55	95	95	94	93	93	93	93	93	93	93	93	93
0.2	0	0	55	98	98	97	97	97	97	97	97	97	96	96	96
0.1	0	0	55	99	99	99	99	99	99	99	99	99	99	98	98
0.0	0	0	55	100	100	100	99	99	99	100	100	100	100	99	100
F2019-2021	0	0	55	10	10	9	9	8	8	8	8	8	8	8	7

b) 限界管理基準値案を上回る確率(%)

β	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2043	2053
1.0	100	100	100	100	100	100	100	100	99	100	100	100	100	99	99
0.9	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.8	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.7	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.6	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.5	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.4	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.3	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.2	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.1	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
0.0	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
F2019-2021	100	100	100	97	92	87	84	82	80	79	77	76	76	71	70

太字は漁獲管理規則案に基づく管理開始から 10 年目となる目標年の値を示す。2023 年以降 の β を 0~1.0 で変更した場合、および現状の漁獲圧(F2019-2021)で漁獲した場合の将来 予測の結果を示す。

補足表 4-2. 将来の親魚量および漁獲量の平均値の推移

a) 親魚量の平均値の推移(千トン)

β	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2043	2053
1.0	46	65	90	89	87	86	85	85	84	84	84	84	85	84	84
0.9	46	65	90	93	91	90	90	89	89	88	89	89	89	88	88
0.8	46	65	90	97	96	95	95	94	94	93	93	93	94	93	93
0.7	46	65	90	103	102	101	100	100	99	99	99	99	99	98	99
0.6	46	65	90	109	109	108	107	107	106	106	106	106	106	105	105
0.5	46	65	90	116	117	116	115	115	114	113	114	114	114	113	113
0.4	46	65	90	125	127	126	125	124	124	123	123	123	123	122	123
0.3	46	65	90	135	139	137	136	136	135	135	135	135	135	134	134
0.2	46	65	90	148	153	152	151	150	149	149	149	149	149	148	148
0.1	46	65	90	162	171	169	168	167	166	166	166	166	166	165	165
0.0	46	65	90	180	193	190	189	188	187	186	186	187	187	185	186
F2019-2021	46	65	90	60	57	55	54	53	51	51	50	50	49	47	46

b) 漁獲量の平均値の推移(千トン)

β	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2043	2053
1.0	41	41	55	54	53	53	52	52	52	52	52	52	52	51	51
0.9	41	41	53	54	53	52	52	52	52	51	52	52	52	51	51
0.8	41	41	50	53	53	52	52	52	51	51	51	51	51	51	51
0.7	41	41	47	52	52	51	51	51	51	50	51	51	51	50	50
0.6	41	41	43	51	51	50	50	50	49	49	49	49	49	49	49
0.5	41	41	38	49	49	48	48	48	47	47	47	47	47	47	47
0.4	41	41	33	45	45	45	45	45	44	44	44	44	44	44	44
0.3	41	41	27	39	40	40	40	39	39	39	39	39	39	39	39
0.2	41	41	20	31	32	32	32	31	31	31	31	31	31	31	31
0.1	41	41	11	19	20	19	19	19	19	19	19	19	19	19	19
0.0	41	41	0	0	0	0	0	0	0	0	0	0	0	0	0
F2019-2021	41	41	71	52	50	48	47	46	45	45	44	44	44	42	41

太字は漁獲管理規則案に基づく管理開始から 10 年目となる目標年の値を示す。2023 年以降 の β を 0~1.0 で変更した場合、および現状の漁獲圧(F2019-2021)で漁獲した場合の将来 予測の結果を示す。

補足資料 5 将来予測の方法

得られた資源量をもとに漁獲管理規則案に従う将来予測を行った。2022 年以降の加入量の予測には、令和3年9月に開催された「管理基準値等に関する研究機関会議」において提案されたホッケー・スティック型関係式(a=0.614、b=4.48e+04、SD=0.268)から推定される値を用いた(日野ほか 2021)。なお、再生産関係のパラメータ推定に使用するデータは、令和2 (2020)年度の資源評価(黒田ほか 2021)に基づく親魚量・加入量とし(補足資料3)、最適化方法には最小二乗法を用いている。加入量の残差の自己相関は考慮している。将来予測における漁獲係数Fは、「令和4 (2022)年度漁獲管理規則およびABC 算定のための基本指針(FRA-SA2022-ABCWG02-01)」における1系資源の管理規則に基づき算出される値を用いた。選択率や漁獲物平均体重等の値には、上述の「管理基準値等に関する研究機関会議」において提案された各種管理基準値案の推定に用いた値を引き続き用いた(補足表5-1)。これらは再生産関係と同じく、令和2 (2020)年度の資源評価に基づく値でありる。2022年の漁獲圧(F2022)は、2022年の漁獲量が2021年の漁獲量41千トンになるように仮定した(補足資料10)。

資源尾数の予測には、コホート解析の前進法を用いた。

$$N_{a+1,y+1} = N_{a,y} \exp(-F_{a,y} - M)$$
(6)

$$N_{2,y+1} = (N_{1,y} + N_{2,y}) \exp(-F_{1,y} - M)$$
(7)

漁獲尾数は、上式で求めた資源尾数と各漁獲シナリオから仮定される F 値をもとに次式 8 により求めた。

$$C_{a,y} = N_{a,y} \left\{ 1 - \exp\left(-F_{a,y}\right) \right\} \exp\left(-\frac{M}{2}\right) \tag{8}$$

引用文献

黒田啓行・髙橋素光・依田真里・向草世香・佐々千由紀・日野晴彦 (2021) 令和 2 (2020) 年度カタクチイワシ対馬暖流系群の資源評価. 令和 2 年度我が国周辺水域の漁業資源評価,水産庁・水産研究・教育機構.

日野晴彦・黒田啓行・向草世香・佐々千由紀・国松翔太 (2021) 令和 3 (2021) 年度カタク チイワシ対馬暖流系群の管理基準値等に関する研究機関会議資料. 水産研究・教育機構.

補足表 5-1. 年齢別平均体重

	選択率	Fmsy	F2022	平均体重	自然死亡	成熟
	(注1)	(注2)	(注3)	(g)	係数	割合
0 歳	0.09	0.18	0.17	2.70	1.00	0
1歳	1.00	1.99	1.91	8.67	1.00	1.00
2歳	1.00	1.99	1.91	26.3	1.00	1.00

- 注1: 令和3年度研究機関会議でMSY を実現する水準の推定の際に使用した選択率(すなわち、令和2年度資源評価でのFcurrentの選択率)。
- 注 2: 令和 3 年度研究機関会議で推定された Fmsy (すなわち、令和 2 年度資源評価での Fcurrent に Fmsy/Fcurrent を掛けたもの)。
- 注3:上記の選択率の下で、今回の資源評価で推定された2022年資源量のもとで2022年 の漁獲量が2021年の漁獲量41千トンになるように仮定した平均F(補足資料10)。

補足資料 6 各種パラメータと評価結果の概要

補足表 6-1. 再生産関係式のパラメータ

再生産関係式	最適化法	自己相関	a	ь	S.D.	ρ
ホッケー・スティック 型	最小二乗法	有	0.614	4.48×10^4	0.268	0.579

a b b は各再生産関係式の推定パラメータ、S.D.は加入量の標準偏差、ρ は自己相関係数である。

補足表 6-2. 管理基準値案と MSY

項目	値	説明			
SBtarget 案	84 千トン	目標管理基準値案。最大持続生産量 MSY を実現する親魚 量(SBmsy)。			
SBlimit 案	(SB0.6msy) 。				
SBban 案	4 千トン	禁漁水準案。MSY の 10%の漁獲量が得られる親魚量 (SB0.1msy)。			
Fmsy		産量 MSY を実現する漁獲圧(漁獲係数 F) 歳)=(0.18, 1.99, 1.99)			
%SPR (Fmsy)	45%	Fmsy に対応する%SPR			
MSY	51 千トン	最大持続生産量 MSY			

補足表 6-3. 最新年の親魚量と漁獲圧

項目	値	説明							
SB2021	46 千トン	2021 年の親魚量							
F2021	2021 年の漁獲 =(0.46, 4.62,	圧(漁獲係数 F)(0 歳, 1 歳, 2 歳) 4.62)							
U2021	39%	2021 年の漁獲割合							
%SPR (F2021)	32.7%	2021 年の%SPR							
%SPR (F2019-2021)	30.6%	現状(2019~2021年)の漁獲圧に対応する%SPR*							
管理基準値案との比較	交								
SB2021/ SBmsy (SBtarget)	0.55	最大持続生産量を実現する親魚量(目標管理基準値 案)に対する 2021 年の親魚量の比							
F2021/ Fmsy	2.08	最大持続生産量を実現する漁獲圧に対する 2021 年 の漁獲圧の比*							
親魚量の水準	MSY を実現す	る水準を下回る							
漁獲圧の水準	魚獲圧の水準 MSY を実現する水準を上回る								
親魚量の動向	横ばい								

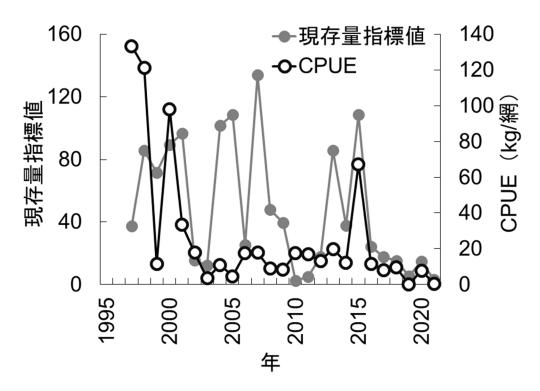
^{*2021}年の選択率の下でFmsyの漁獲圧を与えるFを%SPR換算して算出し求めた比率。

補足表 6-4. 予測漁獲量と予測親魚量

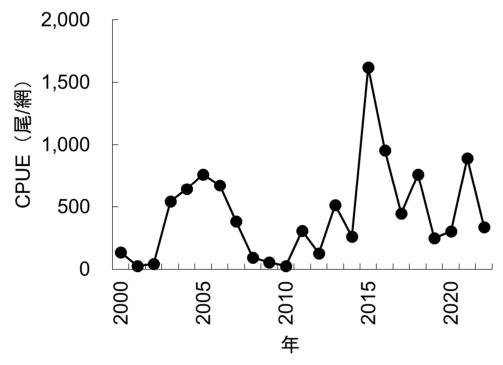
2023年の親魚量(予測平均値):90千トン													
項目	2023 年の 漁獲量 (千トン)	現状の漁獲圧に 対する比 (F/F2019-2021)	2023 年の 漁獲割合(%)										
β=1.0	55	0.41	33										
β=0.8	50	0.33	30										
β=0.6	43	0.25	26										
β=0.4	33	0.16	20										
β=0.2	20	0.08	12										
β=0	0	0	0										
F2019-2021	71	1.00	42										

補足表 6-5. 異なる β を用いた将来予測結果

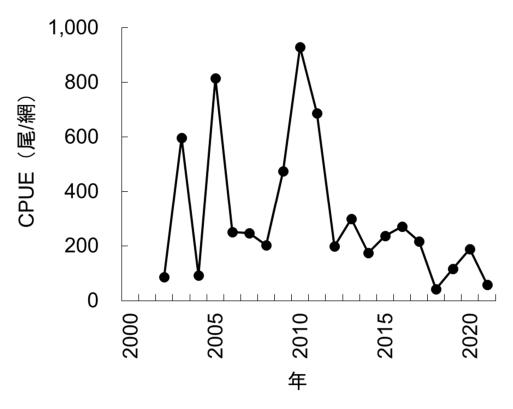
考慮している不確実性:	考慮している不確実性:加入量													
β	2033 年 の親魚量	90%		平に親魚量が. ■値案を上回る										
	(千トン)	(千トン)	SBtarget	SBlimit	SBban									
	,	, . ,	案	案	案									
β=1.0	85	47 – 135	45	100	100									
β=0.8	94	54 – 149	58	100	100									
β=0.6	106	62 – 166	73	100	100									
β=0.4	123	72 – 192	88	100	100									
β=0.2	149	88 – 231	96	100	100									
β=0	187	111 – 289	100	100	100									
F2019-2021	49	11 – 92	8	76	99									


補足資料 7 浮魚類魚群量調査結果の概要

春季~夏季に行われている計量魚群探知機や中層トロールなどを用いた浮魚類魚群量調査の概要を示した。それぞれの調査で算出される資源量指標値は、系群全体の資源量をどのように反映しているか検討中のため、資源動向を判断するための参考値としての利用に留めた。


計量魚探などを用いた浮魚類魚群量調査が夏季 (8~9月) に九州北西岸で行われている。この調査から得られた計量魚群探知機による現存量指標値 (Ohshimo 2004) および中層トロールによる CPUE (漁獲量/有効網数) を補足図 7-1 に示した。現存量指標値は増減を繰り返しながら推移しており、1997 年以降の最高値は 2007 年における 134.0 (相対値) であった。2016 年以降の現存量指標値は低水準であり、2021 年は 3.3 であった。中層トロールによるカタクチイワシの CPUE は、1997~1998 年 には 130 kg/網前後の値を示していた。1999 年以降の CPUE は、例外的に高かった 2000 年と 2015 年を除いて $0.01\sim33.4$ kg/網の範囲で変動し、2021 年は 0.6 kg/網だった。

ニューストンネットを用いた新規加入量調査が東シナ海で春季(4 月)に行われている。この調査におけるカタクチイワシ仔魚の CPUE の推移を補足図 7-2 に示した。CPUE は 2000~2002 年には $26\sim138$ 尾/網の範囲にあったが、 $2003\sim2007$ 年には 385 尾/網 ~765 尾/網まで急増した。CPUE の水準は $2008\sim2014$ 年に一旦低下し、262 尾/網未満の値が多くみられるようになった。CPUE は 2015 年には 1,622 尾/網まで急上昇した後、2016 年以降減少傾向であったが、2021 年には 891 尾/網まで増加して 2022 年は 339 尾/網となった。

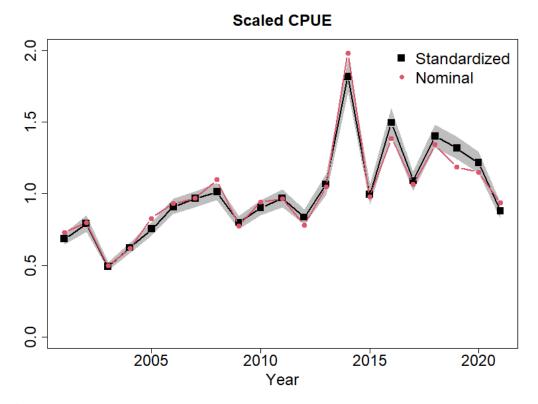

九州北西岸における中層トロールなどを用いた浮魚類魚群量調査(5~6 月)において、ニューストンネットに入網した仔魚の CPUE の推移を補足図 7-3 に示した。CPUE は、2003年(598 尾/網)、2005年(815 尾/網)、2009~2011年(475~928 尾/網)に特に高く、その他の年(2002~2017年)には $85\sim299$ 尾/網の間で変動した。2018年の CPUE は急減して 43 尾/網と過去最低水準となったが、2021年は 59 尾/網であった。

補足図 7-1. 現存量指標値 (計量魚探) と中層トロールによるカタクチイワシの CPUE (8 \sim 9月)

補足図 7-2. 東シナ海で実施した調査における仔魚の CPUE (4月)

補足図 7-3. 九州北西岸で実施した調査における仔魚の CPUE (5~6月)

補足資料 8 長崎県における中・小型まき網の標準化 CPUE

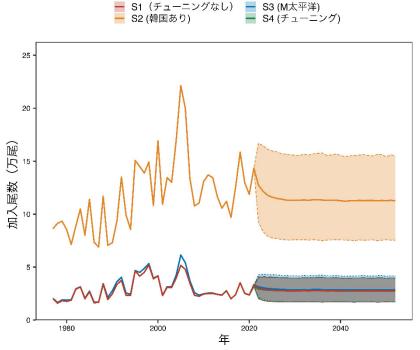

2001 年以降、本系群における漁獲量の約半数を占める長崎県における中・小型まき網の CPUE 標準化を行った。昨年度の手法に準じて標準化した結果を $0\sim2$ 歳魚の資源量指標値 としてチューニング VPA に利用した場合、加入量のレトロスペクティブバイアスに過大推 定の問題が見られた。そこでこの問題を解消する一案として、標準化結果を漁獲物の主である 0 歳魚のみの資源量指標値として利用するため、漁獲物に 1 歳魚以上が比較的多く含まれる $1\sim3$ 月を除き、 $4\sim12$ 月のデータを標準化の対象とした。CPUE として 1 日 1 隻当たりのカタクチイワシ漁獲量(kg)を用いた。環境要因として考慮した 50 m 深水温データは FRA-ROMS II の再解析値(2022 年 7 月 15 日ダウンロード)を用いた。

中・小型まき網では主にカタクチイワシを中心に操業しているため、狙い操業の効果は考慮せず、ゼロ漁獲データを除いた有漁データを解析の対象とした。応答変数を自然対数変換した CPUE、説明変数を年(Year)・月(Month)・海域(Area)・50 m 深水温(Temp50 m)として、モデルの誤差が正規分布に従うと仮定したモデルを構築した。全ての説明変数はカテゴリカル変数として、50 m 深水温は 1℃毎のカテゴリとした。BIC(ベイズ情報量規準)を基準として総当たり法により以下のフルモデルが選択された。

Ln (CPUE) ~ Intercept + Year + Month + Area + Temp50 m + error term

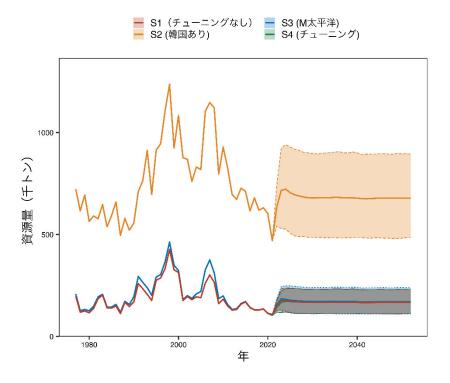
選択されたモデルについて、VIF を指標として多重共線性に問題が無いことを確認した。 残差の頻度分布は正規分布から大きくは逸脱していなかった。選択されたモデルを基に標 準化 CPUE を計算した。

2001~2021 年の平均値で規格化した標準化 CPUE はノミナル CPUE と概ね同様の傾向で増減し、2001~2013 年にかけて横ばいで推移し、2014 年に最高値となる 1.9 を示した。その後 2015~2020 年にかけて増減を繰り返し、2021 年に減少した。本標準化手法の詳細は別紙ドキュメント(FRA-SA2022-SC06-05)に示した。

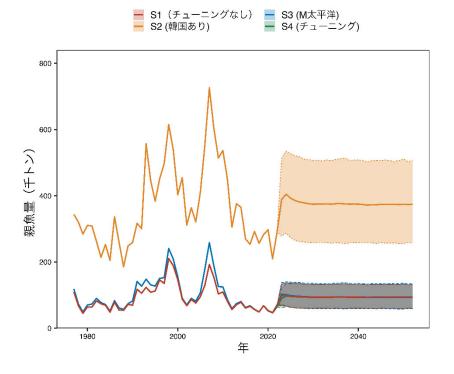

補足図 8-1. 平均値で規格化したノミナル CPUE と標準化 CPUE の推移 図中の灰色は標準化 CPUE の 95%信頼区間を示す。

補足資料 9 異なるシナリオのもとでの資源評価および将来予測の結果

補足表 9-1 の通り、異なる条件下で資源評価および β =0.8 とした場合の将来予測結果を示した。シラスの漁獲を考慮しなかった場合に(シナリオ $S1\sim S4$)加えて、考慮した場合(シナリオ $S5\sim S7$)についても計算した。また自然死亡係数が異なる場合や、韓国の漁獲を考慮した場合についても計算した。なお、S4 が本報告書におけるベースケースを示し、2022年については直近年である 2021年の漁獲量 41 千トンを与える F を仮定している。S4 以外のシナリオにおいても、2022年の F として 2021年の漁獲量を与える F を仮定した。S4 における 2022年の F を変えた場合の将来予測は、補足資料 E 10 に示した。

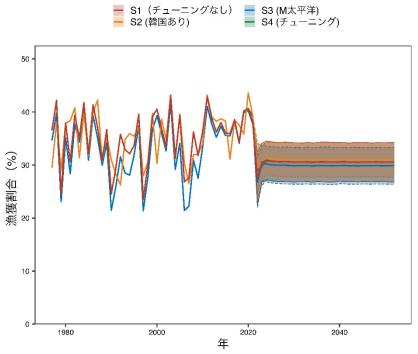

各シナリオにおける加入量、資源量、親魚量、漁獲割合の推定結果をシラスの有無に分けて示した(補足図 9-1、9-2、補足表 9-2、9-3)。また 2021 年の親魚量と漁獲圧を神戸プロットにまとめた(補足図 9-3)。いずれのシナリオも 2021 年の親魚量は SBmsy を下回り、漁獲圧は Fmsy を上回った。

(a) 加入尾数

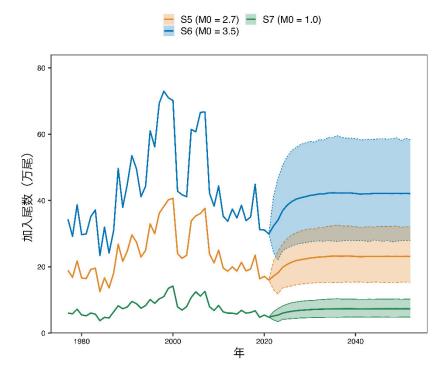


補足図 9-1. シラス無しのシナリオにおける(a)加入尾数、(b)資源量、(c)親魚量、(d)漁獲割合の変化(S4がベースケースで、色のついた幅が90%予測区間を、太い実線が平均値を示す)

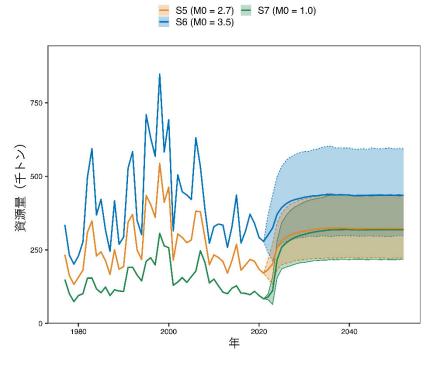
(b) 資源量



(c) 親魚量

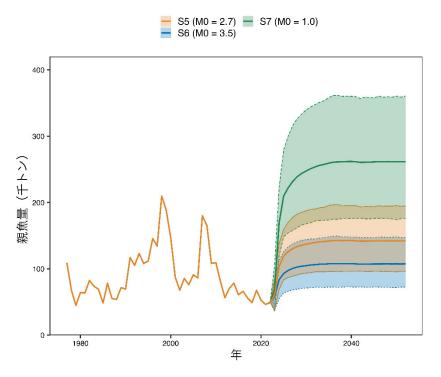

補足図 9-1. シラス無しのシナリオにおける(a)加入尾数、(b)資源量、(c)親魚量、(d)漁獲割合の変化(S4がベースケースで、色のついた幅が90%予測区間を、太い実線が平均値を示す)(つづき)

(d) 漁獲割合

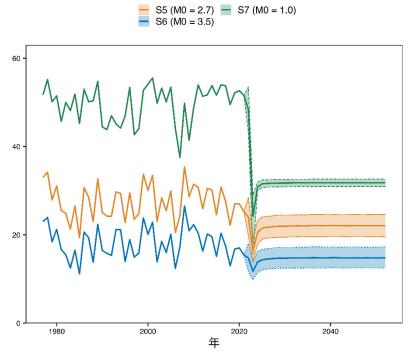


補足図 9-1. シラス無しのシナリオにおける(a)加入尾数、(b)資源量、(c)親魚量、(d)漁獲割合の変化(S4がベースケースで、色のついた幅が90%予測区間を、太い実線が平均値を示す)(つづき)

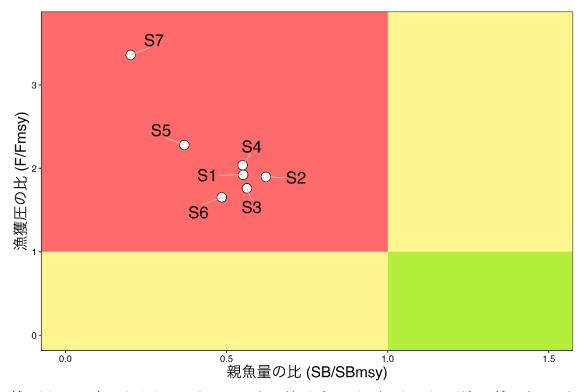
(a) 加入尾数



(b) 資源量



補足図 9-2. シラス有りのシナリオにおける (a) 加入尾数、(b) 資源量、(c) 親魚量、(d) 漁獲割合の変化(色のついた幅が 90%予測区間を、太い実線が平均値を示す)


(c) 親魚量

(d) 漁獲割合

補足図 9-2. シラス有りのシナリオにおける(a)加入尾数、(b)資源量、(c)親魚量、(d) 漁獲割合の変化(色のついた幅が 90%予測区間を、太い実線が平均値を示す)(つづき)

補足図 9-3. 各シナリオにおける 2021 年の神戸プロット (シナリオの詳細は補足表 9-1 を 参照)

補足表 9-1. 各シナリオの詳細

シナリオ	シラス	M(0歳、1歳、2歳)	その他条件	備考
	の有無			
C1	無	10 10 10		令和 3 年度のベースケー
S1	////	1.0, 1.0, 1.0		ス
S2	無	1.0, 1.0, 1.0	韓国漁獲あり	
S3	無	1.0, 1.0, 1.6		太平洋系群の M
C 4	∕tur.	10 10 10	チューニング	令和 4 年度のベースケー
S4	無	1.0, 1.0, 1.0	あり	ス
S5	有	2.7, 1.0, 1.0		
S6	有	3.5, 1.0, 1.0		
S7	有	1.0, 1.0, 1.0		令和 2 年度までのベース
	Ή	1.0, 1.0, 1.0		ケース

補足表 9-2. シナリオ別の将来の親魚量が目標・限界管理基準値を上回る確率 (β=0.8)

a) 目標管理基準値を上回る確率 (%)

シナリオ	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2043	2053
S1	0	0	68	68	63	61	60	59	58	58	58	58	58	57	57
S2	0	0	68	74	68	65	63	63	61	60	60	61	61	60	60
S3	0	0	75	70	64	62	61	60	59	58	58	59	58	58	57
S4	0	0	55	65	62	60	59	59	58	58	57	58	58	57	57
S5	0	0	0	20	38	45	50	54	56	57	59	60	61	62	62
S6	0	0	3	28	41	48	52	55	57	58	59	60	60	61	61
S7	0	0	0	8	32	40	46	51	54	56	58	59	61	63	63

b) 限界管理基準値を上回る確率 (%)

シナリオ	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2043	2053
S1	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
S2	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
S3	100	100	100	100	100	100	100	100	99	100	100	100	100	99	100
S4	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
S5	100	100	90	100	100	100	100	100	100	100	100	100	100	100	100
S6	100	100	96	100	100	100	100	100	100	100	100	100	100	100	100
S7	0	0	55	99	100	100	100	100	100	100	100	100	100	100	100

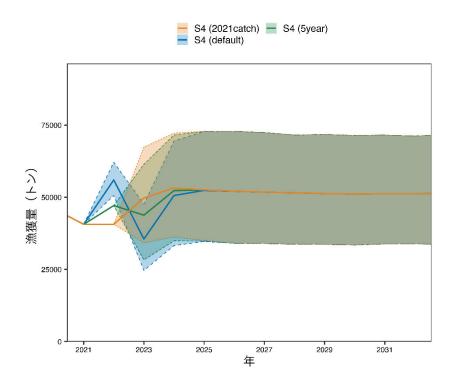
S4 がベースケースであり、太字は漁獲管理規則案に基づく管理開始から 10 年目となる目標年の値を示す。

補足表 9-3. シナリオ別の将来の親魚量および漁獲量の平均値の推移 (β=0.8)

a) 親魚量の平均値の推移(千トン)

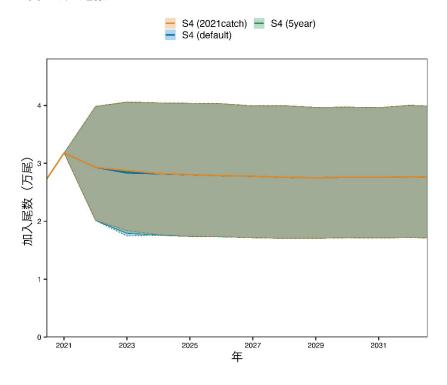
シナリオ	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2043	2053
S1	46	69	98	99	97	96	95	94	94	93	93	93	94	93	93
S2	210	291	389	405	392	385	381	379	376	374	375	375	375	373	373
S3	47	70	103	101	99	97	96	95	95	94	94	94	94	93	94
S4	46	65	90	97	96	95	95	94	94	93	93	93	94	93	93
S5	46	49	60	103	119	126	130	134	136	137	139	140	141	142	142
S6	46	49	58	84	93	98	101	103	104	105	106	106	107	107	107
S7	46	49	69	170	210	222	232	239	244	248	251	254	256	261	261

b) 漁獲量の平均値の推移(千トン)

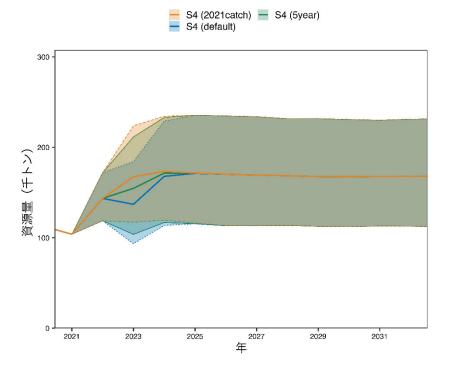

シナリオ	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2043	2053
S1	41	41	54	54	53	52	52	52	51	51	51	51	51	51	51
S2	184	184	219	226	220	216	214	213	211	210	211	211	211	210	210
S3	41	41	56	55	53	53	52	52	51	51	51	51	51	51	51
S4	41	41	50	53	53	52	52	52	51	51	51	51	51	51	51
S5	43	43	33	53	60	63	65	67	68	69	69	70	70	71	71
S6	43	43	38	51	56	59	60	61	62	63	63	63	64	64	64
S7	43	43	29	67	82	87	90	93	95	96	98	99	100	101	102

S4 がベースケースであり、太字は漁獲管理規則案に基づく管理開始から 10 年目となる目標年の値を示す。

補足資料 10 2022 年における F の仮定を変えた場合の将来予測

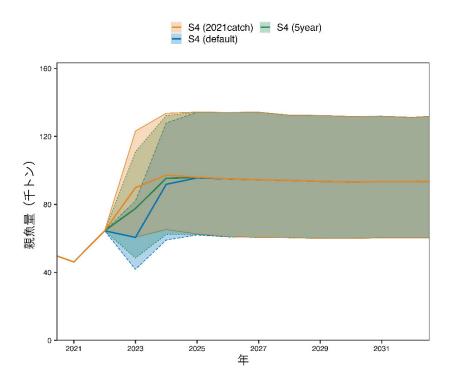

2022 年における F の仮定を変えた場合の将来予測結果(β =0.8)を示した。2022 年の F を 現状の漁獲圧 (F2019-2021) とした場合、2022 年における漁獲量は 56 千トンと予測された。 しかし、本系群における漁獲量の半数程度を占める長崎県において、2022 年 $1\sim6$ 月の中・小型まき網漁業による漁獲量は昨年 $1\sim6$ 月と同程度の 16 千トンに留まっている。そのため、2022 年については、直近年である 2021 年の漁獲量 41 千トンを与える F を仮定した(0 歳=0.17、 $1\sim2$ 歳=1.91、補足資料 5)。参考として、2022 年の F を現状の漁獲圧 (F2019-2021) にした場合(default)と、直近 5 年(2017~2021 年)の平均漁獲量(47 千トン)を与える F にした場合(5 year)の漁獲量、加入量、資源量、親魚量、漁獲割合の将来予測を示した。

2022 年の F を現状の漁獲圧にした場合、漁獲量は 2022 年に 56 千トン、2023 年に 36 千トンと推定され、その後 50 千トン程度で維持される(補足図 10-1)。一方、2022 年の F を 2021 年または直近 5 年の平均漁獲量を与える F とした場合、2023 年の漁獲量はそれぞれ 50 千トンおよび 44 千トンと予測された(補足図 10-2)。

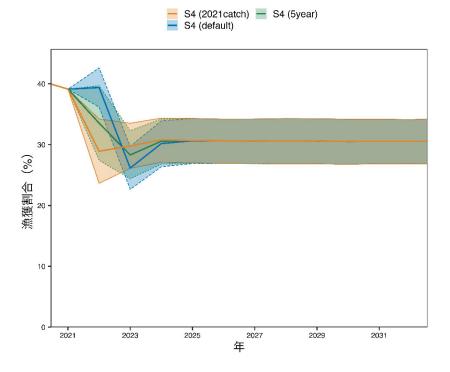


補足図 10-1. 2022 年における F の仮定を変えた場合の漁獲量の将来予測 2021 catch がベースケースを示し、色のついた幅が 90%予測区間を、太い実線が平均値を示す。

(a) 加入尾数



(b) 資源量



補足図 10-2. 2022 年における F の仮定を変えた場合の (a) 加入尾数、(b) 資源量、(c) 親魚量、(d) 漁獲割合の変化 (色のついた幅が 90%予測区間を、太い実線が平均値を示す)

(c) 親魚量

(d) 漁獲割合

補足図 10-2. 2022 年における F の仮定を変えた場合の (a) 加入尾数、(b) 資源量、(c) 親魚量、(d) 漁獲割合の変化 (色のついた幅が 90%予測区間を、太い実線が平均値を示す) (つづき)