平成30(2018)年度ウルメイワシ対馬暖流系群の資源評価

責任担当水研: 西海区水産研究所 (鈴木 圭、安田十也、黒田啓行、髙橋素光)

参 画 機 関: 日本海区水産研究所、青森県産業技術センター水産総合研究所、秋田県水

産振興センター、山形県水産試験場、新潟県水産海洋研究所、富山県農林 水産総合技術センター水産研究所、石川県水産総合センター、福井県水産 試験場、京都府農林水産技術センター海洋センター、兵庫県立農林水産技 術総合センター但馬水産技術センター、鳥取県水産試験場、島根県水産技 術センター、山口県水産研究センター、福岡県水産海洋技術センター、佐 賀県玄海水産振興センター、長崎県総合水産試験場、熊本県水産研究セン ター、鹿児島県水産技術開発センター

要約

本系群の資源量について、コホート解析により計算した。資源量は、2003 年以降増加傾向を示し、2016 年には 130 千トンまで増加したが 2017 年は 90 千トンとなった。資源の回復措置をとる閾値である Blimit は再生産関係から親魚量 27 千トンとした。2017 年の親魚量は 64 千トンであり、Blimit を上回った。一方で中位水準と高位水準の境である 75 千トンを下回っているため、水準を中位と判断した。資源動向は過去 5 年間(2013~2017 年)の資源量の推移から横ばいと判断された。親魚量の維持が期待される Fmed を管理基準として2019 年 ABC を算定した。

管理基準	Target / Limit	2019年 ABC (チトン)	漁獲 割合 (%)	F値 (現状のF値から の増減%)
	Target	29	33	0.72 (-17%)
Fmed	Limit	33	38	0.90 (3%)

Target は、資源変動の可能性やデータ誤差に起因する評価の不確実性を考慮し、より安定的な資源の増大が期待される漁獲量である。Limit は、管理基準の下で許容される最大レベルの漁獲量である。Ftarget = α Flimit とし、係数 α には標準値 0.8 を用いた。現状の F は 2014 \sim 2016 年の平均の F で 0.87 である。漁獲割合は 2019 年の漁獲量/資源量、F 値は各年齢の平均値である。2017 年の親魚量は 64 千トン。

年	資源量	親魚量	漁獲量	F 値	漁獲割合
·	(千トン)	(千トン)	(千トン)	1 1	(%)
2014	73	35	25	0.91	34
2015	130	82	42	0.66	32
2016	130	80	52	1.05	40
2017	90	64	36	0.87	40
2018	89	55	33	0.87	37
2019	88	55	_	_	_

2018年、2019年の値は、将来予測に基づく値。

水準: 中位 動向: 横ばい

本件資源評価に使用したデータセットは以下のとおり

データセット	基礎情報、関係調査等
年齢別・年別漁獲尾数	漁業・養殖業生産統計年報(農林水産省)
	主要港水揚げ量(鳥取~鹿児島(8)県)
	月別体長組成調査(水研・鳥取~鹿児島(8)県)
資源量指数	
• 魚群量	魚群分布調査「計量魚探などを用いた浮魚類魚群量調査」(8~
	9月、水研)
	・計量魚探、中層トロール
• 産卵量	卵稚仔調査(周年、水研、青森~鹿児島(17)府県)
	・ノルパックネット
自然死亡係数 (M)	年あたり M=0.7 を仮定(大下 2003, 2009)

1. まえがき

我が国周辺に分布するウルメイワシは対馬暖流系群と太平洋系群から構成される。ウルメイワシ対馬暖流系群は、マイワシやカタクチイワシに比べてやや暖かい海域に分布し、その漁獲量の変動幅はマイワシに比べて小さい。

2. 生態

(1) 分布・回遊

本種は日本の沿岸域を中心に分布し、特に本州中部以南に多い(落合・田中 1986)。ウルメイワシ対馬暖流系群の漁場は、主に九州西方から山陰の沿岸に沿って帯状に形成される。 一部は夏季に日本海へ、冬季に九州西岸へ回遊すると考えられる(図 1)。

(2) 年齢·成長

対馬暖流域におけるウルメイワシの成長式は次のように表される(大下ほか 2011; 図 2)。

$$BL_m = 244.77(1 - \exp(-0.10(m - 0.55)))$$

ただし、 BL_m はふ化後月数mにおける被鱗体長(mm)である。寿命は3年程度である。

(3) 成熟·産卵

卵・稚魚の出現状況から、本系群の産卵は九州周辺水域ではほぼ周年にわたり行われると考えられる。北方の海域ほど産卵期間は短く、青森県以南の日本海北部では春から夏にかけて産卵する(内田・道津 1958)。ウルメイワシは 1 歳で成熟する(図 3, 大下ほか 2011)。

(4) 被捕食関係

ウルメイワシはカイアシ類、十脚類幼生、端脚類などを捕食し(Tanaka et al., 2006)、大型 魚類、ほ乳類、海鳥類、頭足類などに捕食される。

3. 漁業の状況

(1) 漁業の概要

ウルメイワシ対馬暖流系群を漁獲する主な漁業は、東シナ海区(福岡県から鹿児島県)では中小型まき網や棒受網であり、日本海西区(福井県から山口県)では大中型まき網、中型まき網、定置網である。日本海北区(石川県・富山県)では定置網などで混獲される程度である。また、対馬暖流域では、沿岸での釣りや刺網による漁獲はほとんどない。

(2) 漁獲量の推移

本系群の漁獲量は、漁業・養殖業生産統計年報の青森県~鹿児島県の合計値とした。対馬暖流系群の海区別漁獲量の経年変化を図 4 および表 1 に示した。海区別では東シナ海区と日本海西区が漁獲のほとんどを占めている。

東シナ海区の漁獲量は、1980年から 1997年まで7千~16 千トンで推移していたが、1998年から 2000年にかけて3 千トンまで減少した。2001年から増加に転じ、2007年以降は10千トン以上の漁獲が続いている。2016年の漁獲量は過去最大となる48千トンとなり、2017年には31千トンとなった。

日本海西区の漁獲量は、1983 年から 1994 年まで 15 千~31 千トンであった。その後減少し、2000 年には 6 千トンとなった。2001 年以降は再び増加し、2013 年まで 6 千トン以上の漁獲が続いたが、2014 年に 3 千トンに急減し、それ以降は 6 千トンを下回っている。2017年は 4 千トン(暫定値)であった。

日本海北区では、ウルメイワシはあまり漁獲されず、年間漁獲量は多くても2千トン程度である。2017年の漁獲量は4百トンであった。

対馬暖流系群全体の漁獲量は、1976 年から 1998 年まで毎年 20 千トンを越える漁獲があった。特に 1980 年代後半から 1990 年代前半までは 40 千トンを上回る年が多くみられた。しかし、1990 年代後半から 2000 年にかけて 10 千トンまで減少した。2001 年以降は増加傾向にあり、2017 年は 36 千トンとなった。

韓国でのウルメイワシの漁獲量は、1990年前半に24千トンと多かったが、その後減少した(表1)。なお、2005年以降の韓国におけるウルメイワシの漁獲量は、2011年を除いて、報告されていない。また、中国のウルメイワシの漁獲量は不明である。

4. 資源の状態

(1) 資源評価の方法

1976~2017 年の月別漁獲量と体長測定資料から推定した年齢別漁獲尾数を用いたコホート解析により資源量を推定した(補足資料 1, 2, 3)。ウルメイワシの分布は主に沿岸に限定され、また韓国、中国の漁獲データが得られていないため、日本の漁獲データに基づき資源評価を行った。

(2) 資源量指標値の推移

日本海(1979年以降)および九州西岸(1997年以降)において実施された卵稚仔調査の結果に基づいて産卵量を算出した(図 5)。日本海の産卵量は、1980年代後半から 1990年代後半にかけて一度大きなピークを示したが、その後は緩やかな増加傾向を示しており、2017年は 2016年と同程度であった。九州西岸の産卵量も近年増加傾向にあるものの、2017年の産卵量は 2016年よりも減少した。

夏季の九州西岸域から対馬海峡において実施された計量魚探などを用いた浮魚類魚群量調査により求められたウルメイワシの現存量指標値(Ohshimo 2004、ただし 2012 年以降は再計算をおこなった)と同時に実施された中層トロール調査による CPUE (kg/網)の推移を図 6 に示した。2017 年の中層トロールの CPUE (4.5 kg/網)は、2016 年 (46 kg/網)より減少した。CPUE と現存量指標値との関係は近年不明瞭となっている。これらの資源調査結果を本系群の親魚量または加入量の指標として利用するには精査が必要であるため本評価では参考程度に留めた。

(3) 漁獲物の年齢組成

月別の年齢-体長キーにより年齢別漁獲尾数を求めた。漁獲は0~1歳魚が主体であった(図7)。

(4) 資源量と漁獲割合の推移

資源量をコホート解析により推定した(図 8、補足資料 3)。自然死亡係数(M)は 0.7 を仮定した(大下 2003, 2009)。推定した資源量は、1970年代後半から 1980年代半ばにかけて減少し、1980年代後半から 1990年代前半にかけて増加した。その後、2000年代前半まで再び減少したが、2003年以降、増加傾向にある。2017年の資源量は、前年 129千トンより減少し、90千トンと推定された。1976年以降の漁獲割合は、1984年の 59%を境に 1990年の 37%まで減少したものの、その後は増減を繰り返し、2017年は 40%であった(図 8)。漁獲割合は、資源量減少期にやや高くなる傾向がある。M を 0.5 から 0.8 の間で 0.1 刻みに変えたときの 2017年の資源量、親魚量、加入尾数の推定値を図 9 に示した。M=0.5を仮定した際の資源量、親魚量、加入尾数は、M=0.7を仮定した際の 82%、86%、75%となった。M=0.8を仮定すると、それぞれ 111%、109%、117%となった。

(5) 再生產関係

図 10 に再生産関係を示した。親魚量と加入尾数との間には正の相関が認められたが、親魚量が多くなると加入尾数は頭打ちになる傾向が認められた。

(6) Blimit の設定

資源回復の閾値となる Blimit は、加入尾数の上位 10%を示す直線と再生産成功率の上位 10%を示す直線の交点に比較的近く、低い親魚量でも高い加入がみられた 1984 年の親魚量 (27 千トン) とした (図 10)。図 11 に親魚量と 0 歳魚尾数の経年変化を示した。親魚量は 近年増加傾向にあり、2017 年の親魚量は 64 千トンで Blimit を上回った。図 12 に RPS の経年変化を示した。RPS は 1980 年代に高く、この時期に高い加入が認められた。近年では 2012 年と 2014 年の RPS が比較的高く、良好な加入が認められた。しかし、2017 年の RPS は 22.6 尾/kg であり、過去 42 年間で 40 番目の値であった。原因については不明である。

(7) 資源の水準・動向

資源水準の基準について、低位と中位の境は Blimit の値とし、中位と高位の境は親魚量の最低値~最大値の三等分に近い 75 千トンとした (図 10, 11)。資源の動向は、過去 5 年間 (2013~2017 年) の資源量の推移から判断した。

近年、親魚量は中位と高位の境である 75 千トン前後で増減している (図 11)。2017 年の 親魚量は 64 千トンで、高位水準にあった 2015 年や 2016 年よりも減少し、中位となった。2017 年は 2015 年や 2016 年と比べると、それぞれ 1、2 歳魚の体重の減少や資源尾数の減少がみられた。これらの影響で親魚量が減少したことが原因で資源水準は中位になったと考えられる。資源量は、2013 年以降 73 千~130 千トンの間で増減していた。これらのことから、2017 年の資源の水準を中位、動向は横ばいとした。

(8) 資源と漁獲の関係

資源量が少ないときには漁獲係数が高くなる傾向が認められた(図 13)。また、経年的にみると、資源量が減少した 1980 年代半ばに高く 1990 年代前半に低くなった(図 14)。1990年代後半から 2000年代前半にかけては、2000年を除いて 1.0よりも高い値で増減したが2000年代後半以降は 1.0前後で増減を繰り返した。

5. 2019 年 ABC の算定

(1) 資源評価のまとめ

資源量および親魚量は 1970 年代後半に高い水準にあったが、1990 年代後半に減少し、2000~2002 年には過去最低水準で推移した。2003 年以降、本系群の資源量は増加傾向となった。近年の親魚量は、中位と高位の境である 75 千トン前後で増減しており、2017 年は 64 千トンであった。近年 5 年間(2013~2017 年)の資源量は 73 千~130 千トンの間で増減していることから、資源水準は中位、動向は横ばいと判断した。

(2) ABC の算定

ABC を算定するにあたり、不確実性の高い直近年を除く近年 5 年間(2012~2016 年)の RPS の中央値(29.2 尾/kg)と親魚量から 2018 年以降の加入量を仮定した。また、親魚量が 75 千トンを超えた場合は、加入尾数が上限に達して一定になると仮定し、その時の加入尾数は親魚量 75 千トンに最近年を除く近年 5 年間の RPS 中央値を乗じた値(22 億尾)とした。2018 年の各年齢の漁獲係数は 2017 年と同じとした。2018 年以降の年齢別体重は、直近

年を含む近年3年間(2015~2017年)の平均値と仮定した。

ABC の算定については、資源量および再生産関係が分かっており、2017年の親魚量(64 千トン)は Blimit(27 千トン)を上回っていることから、ABC 算定規則の 1-1)-(1)を用いて ABC を算定した。ただし、2018年の Fが 2017年と同等だと仮定すると、親魚量は 2018年に 55 千トン程度まで減少すると予測される。また、2017年の RPS は、不確実性が高いと考えられるものの、過去 42 年間で 3 番目に低い値となっており、2018年以降の加入量の推移に特に注意すべきである。これらの点を考慮して、親魚量の維持・増加を図ることを管理目標として、2019年の ABC を算出した。

図 15 に 2017 年の選択率をもとにした F に対する%SPR と YPR の関係を示した。2017 年の F (Fcurrent: 0.87) は、F30%SPR (1.84) や F40%SPR (1.25) あるいは Fmax (1.38) よりも低く、F0.1 (0.76) や Fmed (0.90) と同程度であった。Fmed 以下で漁獲を維持した場合、2019 年以降には親魚量の維持・増加が期待される。ただし、近年の F の値は比較的大きな幅で増減を繰り返しているため(図 14)、Fcurrent を用いた将来予測が難しい。一方で、近年の親魚量は比較的高い水準にあることから、管理基準は親魚量を維持する Fmed とし、資源評価の不確実性を考慮した予防的措置としての係数 α を 0.8 とした。ABC を算定する式は次のとおりである。

Flimit=基準値 Ftarget=Flimit×α

管理基準	Target / Limit	2019年 ABC (チトン)	漁獲 割合 (%)	F値 (現状のF値から の増減%)
Emad	Target	29	33	0.72 (-17%)
Fmed	Limit	33	38	0.90 (3%)

Target は、資源変動の可能性やデータ誤差に起因する評価の不確実性を考慮し、より安定的な資源の増大が期待される漁獲量である。Limit は、管理基準の下で許容される最大レベルの漁獲量である。Ftarget = α Flimit とし、係数 α には標準値 0.8 を用いた。漁獲割合は、漁獲量÷資源量である。現状の F は $2014\sim2016$ 年の平均の F で 0.87 である。F 値は各年齢の平均である。

(3) ABC の評価

図 16A~C および下表に 2019 年以降の F を Fcurrent (F2017)、F0.1 および Fmed とした場合の資源量、漁獲量、親魚量について示した。F0.1 および Fmed の値は Fcurrent にそれぞれ 0.87 および 1.03 を乗じた値に等しい。いずれの F で漁獲した場合でも、親魚量は Blimit (27 千トン) 以上で維持される。F0.1 で漁獲した場合は 2020 年まで Fcurrent や Fmed で漁獲した場合よりも漁獲量が下回ると予測された。また、Fcurrent と Fmed で漁獲した場合で

は、ABCや将来的な漁獲量に大きな違いはみられなかった。

漁獲シナリオ			漁獲量	と (千ト	ン)					
(管理基準)		F値	2017	2018	2019	2020	2021	2022	2023	2024
適度な漁獲圧	Target	0.61	36	33	26	31	36	41	44	44
による漁獲 (F0.1)	Limit	0.76	36	33	30	33	35	38	41	44
現状の漁獲圧	Target	0.70	36	33	29	32	36	40	44	46
の維持 (Fcurrent)	Limit	0.87	36	33	33	33	34	34	35	36
親魚量の維持	Target	0.72	36	33	29	32	36	39	43	46
(Fmed)	Limit	0.90	36	33	33	34	34	34	34	34
			資源量	資源量(千トン)						
			2017	2018	2019	2020	2021	2022	2023	2024
適度な漁獲圧	Target	0.61	90	89	88	105	123	138	145	146
による漁獲 (F0.1)	Limit	0.76	90	89	88	96	103	112	120	129
現状の漁獲圧	Target	0.70	90	89	88	100	111	124	134	139
の維持 (Fcurrent)	Limit	0.87	90	89	88	90	91	93	94	96
親魚量の維持	Target	0.72	90	89	88	98	108	119	130	137
(Fmed)	Limit	0.90	90	89	88	89	89	89	89	89
			親魚量	: (千ト	ン)					
			2017	2018	2019	2020	2021	2022	2023	2024
適度な漁獲圧	Target	0.61	64	55	55	65	76	89	96	97
による漁獲 (F0.1)	Limit	0.76	64	55	55	60	64	69	75	81
現状の漁獲圧	Target	0.70	64	55	55	62	69	77	86	90
の維持 (Fcurrent)	Limit	0.87	64	55	55	56	57	58	59	60
親魚量の維持	Target	0.72	64	55	55	61	67	74	81	88
(Fmed)	Limit	0.90	64	55	55	55	55	55	55	55

(4) ABC の再評価

昨年度評価以降追加	修正・更新された数値
されたデータセット	
2016 年漁獲量確定値	2016年、2017年年齢別漁獲尾数
2017 年漁獲量暫定値	
2017年年齢別体重	再生産関係、%SPR

評価対象年 (当初・再評価)	管理 基準	F値	資源量 (千トン)	ABClimit (チトン)	ABCtarget (チトン)	漁獲量 (千トン) (実際のF値)
2017年(当初)	Fcurr ent	1.15	78	34	30	
2017年(2017年 再評価)	Fcurr ent	0.63	101	29	24	
2017年(2018年 再評価)	Fcurr ent	0.66	90	31	26	36 (0.87)
2018年(当初)	Fcurr ent	0.97	133	50	44	
2018年(2018年 再評価)	Fcurr ent	1.05	89	35	31	

2017年(2018年再評価)の資源量が2017年(当初)より増加した理由は、1、2歳魚資源尾数が当初の見込みよりも多くなったためである。一方で2017年(2017年再評価)に比べて2017年(2018年再評価)では、0、2歳魚の資源尾数と全年齢の推定体重が見込みよりも少なくなったため、資源量が下方修正された。しかし、2017年(2017年再評価)に比べて2017年(2018年再評価)のFが大きくなったことからABCは増加した。また2018年(当初)に比べて2018年(2018年再評価)では、0、1歳魚の資源尾数と2歳魚の推定体重が少なくなったため資源量が下方修正され、それに伴ってABCも下方修正された。

6. ABC 以外の管理方策の提言

本種は寿命が短く、漁獲物の大半は 0~1 歳魚である (図 7)。親魚量と加入尾数には正の相関が見られるので、資源を安定して利用するためには、親魚量を一定以上に保つことが有効である。そのため、加入が少ないと判断された場合には、0 歳魚を獲り控えるなどの方策が効果的だと考えられる。

7. 引用文献

落合明・田中克 (1986) 新版魚類学 (下). 恒星社厚生閣,1140pp. 東京

大下誠二 (2003) 平成 14 年度ウルメイワシ対馬暖流系群の資源評価, 我が国周辺水域の漁業資源評価 (平成14年度),789-802.

Ohshimo, S. (2004) Spatial distribution and biomass of pelagic fish in the East China Sea in summer, based on acoustic surveys from 1997 to 2001. Fish. Sci., **70**, 389-400.

大下誠二 (2009) 平成 20 年度ウルメイワシ対馬暖流系群の資源評価, 我が国周辺水域の漁業資源評価 (平成 20 年度), 659-674.

大下誠二・後藤常夫・大塚徹・槐島光次郎 (2011) 東シナ海におけるウルメイワシの年齢・

成長と成熟特性. 日本水産学会誌, 77, 15-22.

- Tanaka, H., I. Aoki and S. Ohshimo (2006) Feeding habits and gill raker morphology of three planktivorous pelagic fish species off the coast of northern and western Kyushu in summer. J. Fish Biol., 68, 1041-1061.
- 内田恵太郎・道津善衛 (1958) 第1篇 対馬暖流域の表層に現れる魚卵・稚魚概説. 対馬暖流 開発調査報告書. 第2輯, 水産庁, pp. 3-65.

図 1. ウルメイワシ対馬暖流 系群の分布図

図 2. 月別体長組成からもと めた成長式

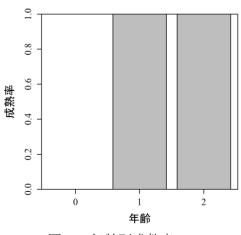


図 3. 年齢別成熟率

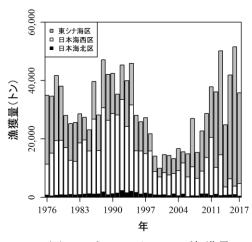


図4. ウルメイワシの漁獲量

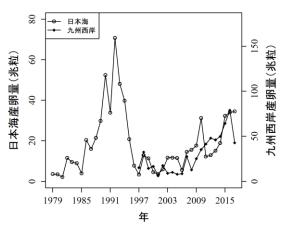


図 5. 産卵量の経年変化

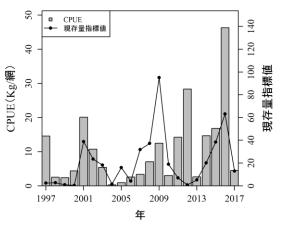


図 6. 計量魚探・中層トロール 調査結果

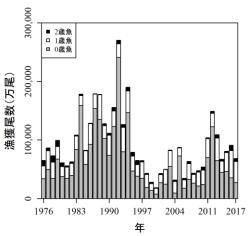


図 7. 年齢別漁獲尾数

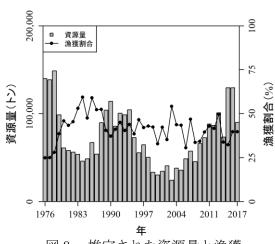


図 8. 推定された資源量と漁獲 割合

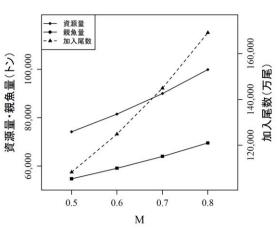


図9. Mを変えたときの資源量・ 親魚量・加入尾数

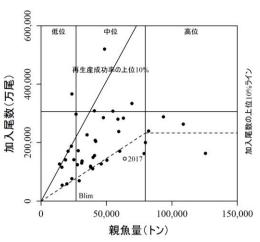


図 10. 親魚量と加入尾数の関係 破線:加入尾数推定の関係

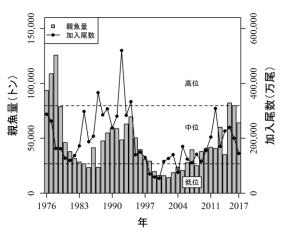


図11. 親魚量と加入尾数の経 年変化

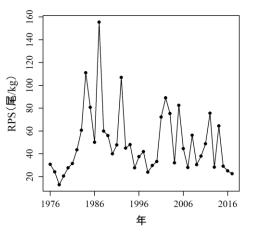


図 12. RPS の経年変化

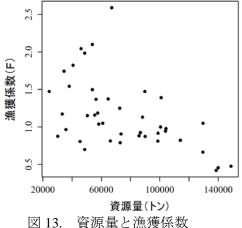


図 13. 資源量と漁獲係数 (F) の関係

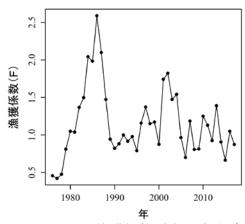


図 14. 漁獲係数 (F) の経年変化

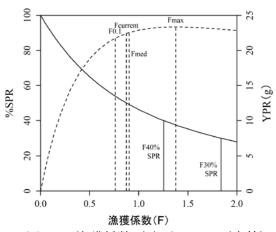


図 15. 漁獲係数 (F) と%SPR (実線) および YPR (破線) の関係

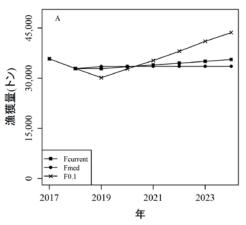


図 16A. 各Fに対応する漁獲量

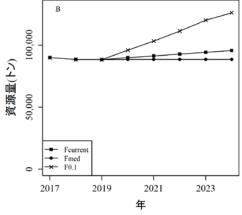
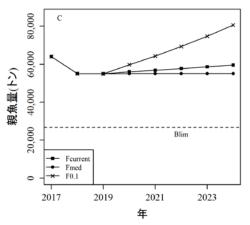


図 16B. 各Fに対応する資源量



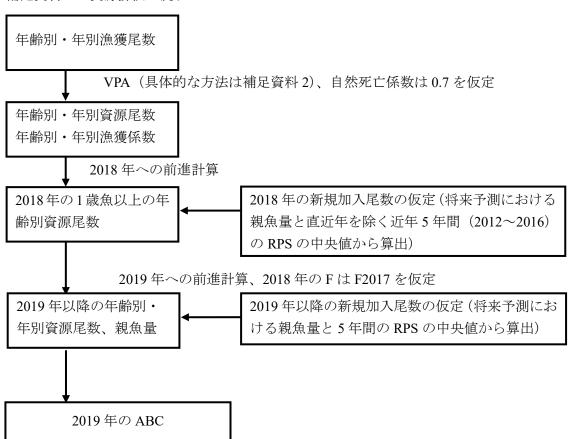

図 16C. 各Fに対応する親魚量

表 1. ウルメイワシの漁獲量(トン)

	すい土海区		口卡海北区	∧ ∌I.	井戸
年	東シナ海区	日本海西区	日本海北区	合計	韓国
1975	20,553	8,851	561	29,965	2.060
1976	23,586	10,614	718	34,918	2,869
1977	19,516	14,671	428	34,615	6,227
1978	22,369	18,693	675	41,737	9,607
1979	18,586	18,671	828	38,085	4,212
1980	10,975	16,235	782	27,992	5,102
1981	12,585	11,698	949	25,232	4,244
1982	13,268	11,535	802	25,605	5,625
1983	9,949	17,699	910	28,558	10,606
1984	7,745	18,551	1,088	27,384	10,829
1985	7,244	14,684	1,186	23,114	8,994
1986	12,897	25,713	1,042	39,652	14,033
1987	12,244	14,826	1,115	28,185	10,300
1988	16,421	28,863	1,794	47,078	10,693
1989	15,789	25,488	854	42,131	7,280
1990	13,798	27,431	1,211	42,440	4,205
1991	7,152	26,755	1,420	35,327	4,463
1992	11,816	31,200	2,266	45,282	3,597
1993	15,709	22,671	1,548	39,928	24,383
1994	14,268	29,546	2,045	45,859	23,974
1995	12,165	14,222	1,668	28,055	18,345
1996	9,985	14,803	1,052	25,840	10,663
1997	12,327	13,518	1,421	27,266	5,593
1998	5,872	14,710	1,125	21,707	1,974
1999	5,247	8,068	780	14,095	6,674
2000	2,983	6,244	700	9,927	4,603
2001	6,195	7,520	863	14,578	766
2002	6,678	7,063	580	14,321	788
2003	5,057	7,064	1,101	13,222	885
2004	7,530	8,621	487	16,638	755
2005	3,823	10,638	1,083	15,544	
2006	7,902	6,739	229	14,870	_
2007	16,512	9,952	499	26,963	_
2008	8,837	6,036	441	15,314	_
2009	13,767	7,813	1,146	22,726	_
2010	15,091	12,486	1,114	28,691	_
2011	17,300	19,914	631	37,845	0
2012	25,938	9,174	1,030	36,142	_
2013	35,602	14,007	540	50,149	_
2014	21,289	2,887	664	24,846	_
2015	35,550	5,551	774	41,875	_
2016	47,768	2,865	917	51,550	_
2017	31,091	4,339	367	35,797	_
	51,091	· · · · · · · · · · · · · · · · · · ·	307	33,171	

2017年の日本の漁獲量は暫定値。

補足資料 1 資源評価の流れ

補足資料 2 資源計算

年齢別漁獲尾数をもとにコホート解析を行なった。なお、ウルメイワシの寿命は3年として計算した。計算方法は次のとおりである。

式1により2016年以前の0、1歳魚の年齢別年別資源尾数を計算した。

$$N_{a,y} = N_{a+1,y+1} \times \exp\left(M\right) + C_{a,y} \times \exp\left(\frac{M}{2}\right) \tag{\sharp 1)}$$

ここで、 $N_{a,y}$ は y 年における a 歳魚の資源尾数、 $C_{a,y}$ は y 年 a 歳魚の漁獲尾数、M は自然死亡係数 (0.7) である。ただし、最高齢 (2 歳) および最近年 (2017 年) の各年齢の資源尾数については次式により計算した。

$$N_{a, y} = \frac{C_{a, y} \times \exp\left(\frac{M}{2}\right)}{\left\{1 - \exp\left(-F_{a, y}\right)\right\}}$$
 (\$\times 2)

Fは漁獲係数であり、最高齢および最近年以外は以下の式で計算される。

$$F_{a,y} = -\ln \left\{ 1 - \frac{C_{a,y} \times \exp\left(\frac{M}{2}\right)}{N_{a,y}} \right\} \tag{\vec{x} 3}$$

2016 年以前の 2 歳魚の F は、1 歳魚の F と同じと仮定して計算した。また、2017 年の 0 歳魚と 1 歳魚の F は 2014 年から 2016 年の同歳魚の F の平均値として計算し、式 1 を用いて資源尾数を計算した。2017 年の 1 歳魚と 2 歳魚の F が同一とした。

また、2018年以降の将来予測について、1歳魚、2歳魚の資源尾数は次の式を用いて前進 法により推定した。

$$N_{a+1,y+1} = N_{a,y} \exp(-F_{a,y} - M)$$
 (£ 4)

0歳魚の資源尾数は、各年の親魚量と設定した再生産成功率により算出した。 2018年以降の年齢別の漁獲尾数は次の式を用いて推定した。

$$C_{a,y} = N_{a,y} \left(1 - \exp\left(-F_{a,y}\right) \right) \times \exp\left(-\frac{M}{2}\right)$$
 (£5)

補足資料3 コホート解析の結果の詳細

年齢	漁獲	工 製(万月	론)		重量(トン	/)	平均	体重((g)	
年\	0歳	1歳	2歳	0歳	1歳	2歳	0歳	1歳	2歳	
1976	33,754	21,925	9,296	5,442	17,771	11,706	16	81	126	
1977	49,638	31,779	5,095	5,632	22,557	6,427	11	71	126	
1978	34,113	28,098	10,813	4,818	23,872	13,047	14	85	121	
1979	67,230	21,596	10,497	8,225	15,796	14,063	12	73	134	
1980	37,217	17,119	6,714	4,356	14,950	8,687	12	87	129	
1981	34,541	18,933	2,296	5,884	16,320	3,028	17	86	132	
1982	39,356	20,505	2,964	7,179	14,294	4,133	18	70	139	
1983	83,715	22,932	1,656	12,354	14,034	2,170	15	61	131	
1984	158,879	16,960	2,422	10,315	14,343	2,727	6	85	113	
1985	58,123	23,448	824	7,887	14,260	967	14	61	117	
1986	92,433	35,483	826	11,471	27,153	1,028	12	77	124	
1987	153,413	24,884	577	12,715	14,779	691	8	59	120	
1988	135,083	42,012	723	19,941	26,209	928	15	62	128	
1989	102,529	21,833	3,292	16,379	21,635	4,117	16	99	125	
1990	73,529	34,560	3,320	16,864	21,904	3,672	23	63	111	
1991	122,892	26,498	6,201	11,900	16,475	6,951	10	62	112	
1992	241,214	22,901	6,225	24,131	14,282	6,868	10	62	110	
1993	79,828	41,792	4,730	10,098	24,426	5,404	13	58	114	
1994	146,540	37,213	6,296	15,312	23,653	6,894	10	64	109	
1995	47,121	25,365	6,417	7,606	13,141	7,308	16	52	114	
1996	38,037	19,880	7,209	3,994	12,405	9,441	11	62	131	
1997	34,478	28,013	2,338	8,923	15,046	3,297	26	54	141	
1998	19,072	21,925	2,070	5,814	12,873	3,019	30	59	146	
1999	13,548	11,785	2,534	3,122	7,262	3,711	23	62	146	
2000	7,628	9,636	1,090	1,984	6,312	1,631	26	66	150	
2001	27,057	13,699	1,880	4,333	7,397	2,849	16	54	152	
2002	24,337	24,936	619	5,067	8,547	707	21	34	114	
2003	54,736	26,973	854	2,213	10,079	929	4	37	109	
2004	9,472	19,670	2,345	1,793	11,530	3,315	19	59	141	
2005	72,697	13,706	749	6,443	8,165	935	9	60	125	
2006	17,661	14,318	2,478	2,945	8,434	3,491	17	59	141	
2007	32,612	27,029	3,573	5,282	16,786	4,895	16	62	137	
2008	26,203	14,725	2,490	3,772	8,133	3,410	14	55	137	
2009	21,203	23,929	2,563	5,165	14,038	3,523	24	59	137	
2010	23,804	24,773	5,146	4,829	16,743	7,119	20	68	138	

補足資料3 コホート解析の結果の詳細(つづき)

年齢	漁獲	尾数 (万月	론)	漁獲	重量(トン	平均体重(g)			
年\	0 歳	1歳	2 歳	0 歳	1歳	2歳	0歳	1歳	2歳
2011	70,267	31,717	1,919	15,937	19,675	2,233	23	62	116
2012	122,749	22,698	3,386	18,254	13,404	4,466	15	59	132
2013	64,772	38,419	5,615	15,523	26,751	7,875	24	70	140
2014	44,794	19,184	2,985	7,573	12,888	4,385	17	67	147
2015	46,176	32,259	2,339	9,108	29,440	3,326	20	91	142
2016	35,307	46,413	9,355	8,781	30,946	11,823	25	67	126
2017	27,375	35,984	4,959	4,914	24,780	6,103	18	69	123

補足資料3 コホート解析の結果の詳細(つづき)

111 AC 55.4"	-	,	1 171 11	N 42 11 11 11 11	(C /				
年齢	漁	獲係数 I	7	資源	尾数(万尾)		資源	量(トン))
年\	0歳	1歳	2歳	0 歳	1歳	2歳	0歳	1歳	2歳
1976	0.18	0.59	0.59	287,970	69,601	29,509	46,424	56,413	37,159
1977	0.31	0.48	0.48	263,044	119,215	19,112	29,844	84,619	24,109
1978	0.35	0.54	0.54	163,148	95,645	36,806	23,040	81,259	44,412
1979	0.88	0.77	0.77	162,538	56,978	27,695	19,885	41,677	37,104
1980	0.54	1.30	1.30	127,399	33,338	13,076	14,910	29,114	16,917
1981	0.53	1.29	1.29	119,384	37,038	4,492	20,337	31,928	5,923
1982	0.52	1.79	1.79	136,787	34,944	5,051	24,950	24,359	7,043
1983	1.17	1.66	1.66	172,352	40,192	2,903	25,434	24,597	3,804
1984	1.42	2.35	2.35	297,385	26,595	3,799	19,307	22,491	4,276
1985	0.58	2.68	2.68	187,439	35,717	1,255	25,434	21,721	1,473
1986	1.00	3.38	3.38	207,426	52,120	1,213	25,741	39,885	1,510
1987	0.90	2.70	2.70	366,205	37,868	878	30,350	22,491	1,052
1988	1.11	1.65	1.65	285,378	73,744	1,269	42,127	46,004	1,630
1989	0.64	1.10	1.10	307,257	46,523	7,015	49,085	46,100	8,772
1990	0.58	0.94	0.94	238,028	80,328	7,717	54,591	50,913	8,535
1991	0.97	0.84	0.84	280,280	66,386	15,536	27,141	41,276	17,416
1992	1.07	0.96	0.96	519,774	52,582	14,293	51,998	32,794	15,771
1993	0.51	1.12	1.12	283,659	88,131	9,974	35,881	51,509	11,397
1994	0.98	0.98	0.98	333,639	84,607	14,314	34,862	53,777	15,674
1995	0.65	0.86	0.86	139,727	62,415	15,791	22,553	32,336	17,983
1996	0.45	1.51	1.51	149,451	36,181	13,120	15,692	22,577	17,182
1997	0.47	1.82	1.82	130,052	47,411	3,958	33,658	25,464	5,581
1998	0.49	1.48	1.48	69,721	40,286	3,803	21,256	23,654	5,548
1999	0.40	1.56	1.56	58,648	21,183	4,555	13,514	13,053	6,670
2000	0.22	1.20	1.20	53,830	19,576	2,214	14,004	12,823	3,314
2001	0.40	2.41	2.41	115,533	21,356	2,931	18,500	11,531	4,441
2002	0.32	2.57	2.57	126,764	38,305	951	26,393	13,130	1,086
2003	0.80	1.81	1.81	140,780	45,800	1,450	5,693	17,114	1,578
2004	0.19	2.21	2.21	76,073	31,338	3,736	14,399	18,369	5,282
2005	0.93	0.98	0.98	170,494	31,101	1,701	15,111	18,529	2,123
2006	0.23	0.94	0.94	124,286	33,436	5,786	20,724	19,695	8,153
2007	0.54	1.51	1.51	110,831	49,273	6,514	17,952	30,600	8,923
2008	0.31	1.06	1.06	141,397	32,056	5,421	20,353	17,705	7,423
2009	0.30	1.07	1.07	115,742	51,751	5,542	28,192	30,361	7,619
2010	0.24	1.75	1.75	155,786	42,534	8,836	31,604	28,748	12,223

補足資料3 コホート解析の結果の詳細(つづき)

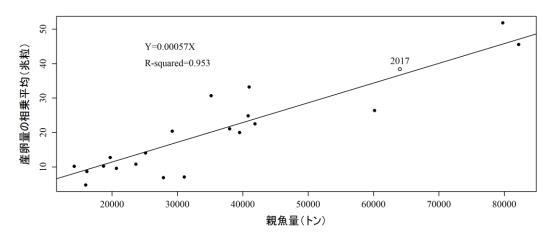
年齢	漁	獲係数]	7	資源	尾数 (万尾	(;)	資源量(トン)			
年	0歳	1歳	2歳	0 歳	1歳	2歳	0歳	1歳	2歳	
2011	0.67	1.36	1.36	204,139	60,587	3,665	46,299	37,584	4,266	
2012	0.83	0.97	0.97	308,608	51,856	7,736	45,893	30,623	10,203	
2013	0.77	1.70	1.70	170,525	66,751	9,756	40,867	46,478	13,682	
2014	0.33	1.20	1.20	226,511	39,036	6,074	38,296	26,224	8,923	
2015	0.32	0.83	0.83	239,856	80,916	5,866	47,313	73,847	8,343	
2016	0.29	1.43	1.43	200,349	86,569	17,449	49,829	57,720	22,052	
2017	0.31	1.15	1.15	144,906	74,610	10,282	26,011	51,379	12,654	

補足資料3 コホート解析の結果の詳細(つづき)

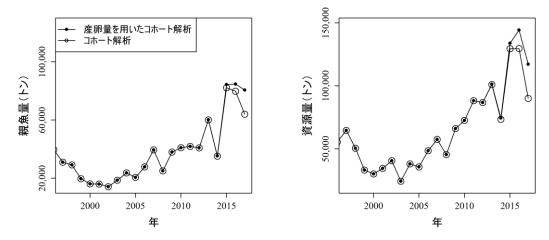
1年 資本 1	資源量	親魚量	加入量	再生産成功率	漁獲割合
年	(トン)	(トン)	(万尾)	(尾/kg)	(%)
1976	139,996	93,572	287,970	31	25
1977	138,573	108,728	263,044	24	25
1978	148,711	125,671	163,148	13	28
1979	98,666	78,781	162,538	21	39
1980	60,941	46,031	127,399	28	46
1981	58,188	37,851	119,384	32	43
1982	56,352	31,402	136,787	44	45
1983	53,834	28,400	172,352	61	53
1984	46,073	26,767	297,385	111	59
1985	48,628	23,194	187,439	81	48
1986	67,136	41,395	207,426	50	59
1987	53,893	23,543	366,205	156	52
1988	89,761	47,634	285,378	60	52
1989	103,958	54,872	307,257	56	41
1990	114,038	59,448	238,028	40	37
1991	85,832	58,692	280,280	48	41
1992	100,563	48,565	519,774	107	45
1993	98,787	62,906	283,659	45	40
1994	104,313	69,450	333,639	48	44
1995	72,871	50,318	139,727	28	38
1996	55,451	39,759	149,451	38	47
1997	64,703	31,045	130,052	42	42
1998	50,458	29,201	69,721	24	43
1999	33,237	19,723	58,648	30	42
2000	30,141	16,136	53,830	33	33
2001	34,472	15,972	115,533	72	42
2002	40,608	14,216	126,764	89	35
2003	24,385	18,692	140,780	75	54
2004	38,050	23,651	76,073	32	44
2005	35,762	20,652	170,494	83	43
2006	48,572	27,849	124,286	45	31
2007	57,475	39,523	110,831	28	47
2008	45,480	25,128	141,397	56	34
2009	66,172	37,980	115,742	30	34
2010	72,575	40,971	155,786	38	40
2011	88,149	41,850	204,139	49	43
2012	86,719	40,826	308,608	76	42
2013	101,027	60,160	170,525	28	50
2014	73,443	35,147	226,511	64	34
2015	129,503	82,190	239,856	29	32
2016	129,602	79,772	200,349	25	40
2017	90,045	64,034	144,906	23	40

補足資料 4 産卵量を用いたコホート解析の試算

本系群を主に漁獲しているのはまき網漁業と棒受け網漁業であり、それらの漁業はウルメイワシ以外の魚種も漁獲対象としている。また、漁業種により漁獲物の体長組成が異なるという特徴もみられる。現在当系群に用いられているコホート解析は、漁獲量や年齢別漁獲尾数など漁業からのデータに大きく依存しているため、ウルメイワシが主な漁獲対象になるかどうかや、どこに漁場が形成されるかで、漁獲量と年齢別漁獲尾数が大きく変動するような場合、資源量推定の不確実性は大きいと考えられる。例えば、今年度の ABC の再評価では、2017 年および 2018 年の資源量が下方修正された。そこで、より頑健な資源評価を目指して、漁業に非依存的な調査データを資源量指標値として用いることで、直近年 (2017 年)の $0\sim2$ 歳の F を調整した。


日本海および東シナ海における産卵量(補足表 4-1)は親魚量の増加に伴って増加する傾向があった(補足図 4-1)ため、産卵量を親魚量の資源量指標値として用いた。マイワシ対馬暖流系群などの資源評価(いわゆる 2 段階法のチューニング VPA)を参考に、まず、2017年の年齢別漁獲係数を過去 3 年間(2014~2016)の平均値とし、これらの漁獲係数と年齢別選択率を推定した(補足資料 2 と同じ)。次に、その選択率のもと、産卵量の変動に合うように F を調整した。調整期間は、日本海および東シナ海の両方で産卵量調査が行われた 1997~2017年とした。産卵量として、両海域間の相乗平均を用いた。以下の残差平方和を最小にするように最近年の F を求めた。

最小
$$\sum_{y=1997}^{2017} \left[\left(\ln(qSSB_y) - \ln(Egg_y) \right)^2 \right]$$
 (式 6)


$$q = \left(\frac{\prod_{y=1997}^{2017} Egg_y}{\prod_{y=1997}^{2017} SSB_y}\right)^{\frac{1}{21}} \tag{🕏 7}$$

ここで、SSByはy年における親魚量、Eggyはy年における産卵量である。

パラメータの推定結果は、q=0.0005、 $F_{0,2017}=0.21$ 、 $F_{1,2017}=0.78$ 、 $F_{2,2017}=0.78$ だった。産卵量を用いてFを調整した場合(補足表 4-2)、調整しない場合に比べて、2015 年以降の親魚量、資源量ともに、多く推定された(補足図 4-2)。今後、産卵量を用いたコホート解析の精度について検証し、資源評価に改善が見込まれる場合は評価モデルとして採用したいと考えている。

補足図 4-1. 海域間の産卵量の相乗平均と親魚量の関係

補足図 4-2. 産卵量情報の有無によるコホート解析の結果の違い 左:親魚量、右:資源量

補足表 4-1. 日本海および九州西岸の推定産卵量(兆粒)およびそれらの相乗平均

		• • • • • • • • • • • • • • • • • • • •	
年	日本海	東シナ海	平均産卵量
1997	3.3	15.1	7.1
1998	12.8	32.4	20.4
1999	11.3	14.3	12.7
2000	4.5	16.6	8.7
2001	3.6	6.3	4.8
2002	5.9	17.5	10.2
2003	11.7	8.9	10.2
2004	11.6	10.0	10.8
2005	11.5	8.0	9.6
2006	5.6	8.5	6.9
2007	14.5	27.6	20.0
2008	15.5	12.7	14.0
2009	17.7	25.2	21.1
2010	31.2	35.3	33.2
2011	12.2	41.4	22.5
2012	12.9	48.0	24.8
2013	15.1	46.0	26.4
2014	18.9	49.9	30.7
2015	32.3	64.2	45.5
2016	34.0	79.0	51.9
2017	34.5	42.8	38.4

補足表 4-2. 産卵量情報を用いたコホート解析の結果の詳細

年齢		獲係数 I		資源尾数 (万尾)		資源量 (トン)			
年\	0 歳	1歳	2 歳	0 歳	1 歳	2 歳	0歳	1歳	2歳
1976	0.18	0.59	0.59	287,970	69,601	29,509	46,424	56,413	37,159
1977	0.31	0.48	0.48	263,044	119,215	19,112	29,844	84,619	24,109
1978	0.35	0.54	0.54	163,148	95,645	36,806	23,040	81,259	44,412
1979	0.88	0.77	0.77	162,538	56,978	27,695	19,885	41,677	37,104
1980	0.54	1.30	1.30	127,399	33,338	13,076	14,910	29,114	16,917
1981	0.53	1.29	1.29	119,384	37,038	4,492	20,337	31,928	5,923
1982	0.52	1.79	1.79	136,787	34,944	5,051	24,950	24,359	7,043
1983	1.17	1.66	1.66	172,352	40,192	2,903	25,434	24,597	3,804
1984	1.42	2.35	2.35	297,385	26,595	3,799	19,307	22,491	4,276
1985	0.58	2.68	2.68	187,439	35,717	1,255	25,434	21,721	1,473
1986	1.00	3.38	3.38	207,426	52,120	1,213	25,741	39,885	1,510
1987	0.90	2.70	2.70	366,205	37,868	878	30,350	22,491	1,052
1988	1.11	1.65	1.65	285,378	73,744	1,269	42,127	46,004	1,630
1989	0.64	1.10	1.10	307,257	46,523	7,015	49,085	46,100	8,772
1990	0.58	0.94	0.94	238,028	80,328	7,717	54,591	50,913	8,535
1991	0.97	0.84	0.84	280,280	66,386	15,536	27,141	41,276	17,416
1992	1.07	0.96	0.96	519,774	52,582	14,293	51,998	32,794	15,771
1993	0.51	1.12	1.12	283,659	88,131	9,974	35,881	51,509	11,397
1994	0.98	0.98	0.98	333,639	84,607	14,314	34,862	53,777	15,674
1995	0.65	0.86	0.86	139,727	62,415	15,791	22,553	32,336	17,983
1996	0.45	1.51	1.51	149,451	36,181	13,120	15,692	22,577	17,182
1997	0.47	1.82	1.82	130,052	47,411	3,958	33,658	25,464	5,581
1998	0.49	1.48	1.48	69,721	40,286	3,803	21,256	23,654	5,548
1999	0.40	1.56	1.56	58,648	21,183	4,555	13,514	13,053	6,670
2000	0.22	1.20	1.20	53,830	19,576	2,214	14,004	12,823	3,314
2001	0.40	2.41	2.41	115,533	21,356	2,931	18,500	11,531	4,441
2002	0.32	2.57	2.57	126,764	38,305	951	26,393	13,130	1,086
2003	0.80	1.81	1.81	140,780	45,800	1,450	5,693	17,114	1,578
2004	0.19	2.21	2.21	76,073	31,338	3,736	14,399	18,369	5,282
2005	0.93	0.98	0.98	170,494	31,101	1,701	15,111	18,529	2,123
2006	0.23	0.94	0.94	124,286	33,436	5,786	20,724	19,695	8,153
2007	0.54	1.51	1.51	110,831	49,273	6,514	17,952	30,600	8,923
2008	0.31	1.06	1.06	141,398	32,056	5,421	20,353	17,705	7,423
2009	0.30	1.07	1.07	115,744	51,751	5,542	28,192	30,361	7,619
2010	0.24	1.75	1.75	155,804	42,535	8,837	31,607	28,749	12,223

補足表 4-2. 産卵量情報を用いたコホート解析の結果の詳細(つづき)

年齢	漁獲係数 F			資源尾数 (万尾)			資源量(トン)		
年\	0 歳	1歳	2歳	0歳	1歳	2 歳	0歳	1歳	2歳
2011	0.67	1.36	1.36	204,198	60,596	3,665	46,313	37,589	4,267
2012	0.83	0.97	0.97	308,809	51,886	7,740	45,923	30,640	10,209
2013	0.77	1.69	1.69	171,165	66,850	9,771	41,021	46,548	13,702
2014	0.32	1.18	1.18	230,899	39,354	6,123	39,038	26,438	8,996
2015	0.30	0.80	0.80	250,667	83,095	6,024	49,445	75,836	8,568
2016	0.23	1.26	1.26	239,304	91,938	18,531	59,518	61,300	23,419
2017	0.21	0.78	0.78	203,181	93,954	12,948	36,472	64,700	15,935

補足表 4-2. 産卵量情報を用いたコホート解析の結果の詳細(つづき)

F	資源量	親魚量	加入量	再生産成功率	漁獲割合
年	(トン)	(トン)	(万尾)	(尾/kg)	(%)
1976	139,996	93,572	287,970	31	25
1977	138,573	108,728	263,044	24	25
1978	148,711	125,671	163,148	13	28
1979	98,666	78,781	162,538	21	39
1980	60,941	46,031	127,399	28	46
1981	58,188	37,851	119,384	32	43
1982	56,352	31,402	136,787	44	45
1983	53,834	28,400	172,352	61	53
1984	46,073	26,767	297,385	111	59
1985	48,628	23,194	187,439	81	48
1986	67,136	41,395	207,426	50	59
1987	53,893	23,543	366,205	156	52
1988	89,761	47,634	285,378	60	52
1989	103,958	54,872	307,257	56	41
1990	114,038	59,448	238,028	40	37
1991	85,832	58,692	280,280	48	41
1992	100,563	48,565	519,774	107	45
1993	98,787	62,906	283,659	45	40
1994	104,313	69,450	333,639	48	44
1995	72,871	50,318	139,727	28	38
1996	55,451	39,759	149,451	38	47
1997	64,703	31,045	130,052	42	42
1998	50,458	29,201	69,721	24	43
1999	33,237	19,723	58,648	30	42
2000	30,141	16,136	53,830	33	33
2001	34,472	15,972	115,533	72	42
2002	40,608	14,216	126,764	89	35
2003	24,385	18,692	140,780	75	54
2004	38,050	23,651	76,073	32	44
2005	35,762	20,652	170,494	83	43
2006	48,572	27,849	124,286	45	31
2007	57,475	39,523	110,831	28	47
2008	45,481	25,128	141,398	56	34
2009	66,173	37,981	115,744	30	34
2010	72,579	40,972	155,804	38	40

補足表 4-2. 産卵量情報を用いたコホート解析の結果の詳細(つづき)

年	資源量	親魚量	加入量	再生産成功率	漁獲割合
+	(トン)	(トン)	(万尾)	(尾/kg)	(%)
2011	88,169	41,856	204,198	49	43
2012	86,772	40,849	308,809	76	42
2013	101,271	60,250	171,165	28	50
2014	74,471	35,433	230,899	65	33
2015	133,849	84,403	250,667	30	31
2016	144,237	84,719	239,304	28	36
2017	117,108	80,635	203,181	25	31