令和4(2022)年度アカアマダイ日本海西・九州北西部の資源評価

水産研究・教育機構 水産資源研究所 水産資源研究センター

参画機関:島根県水産技術センター、山口県水産研究センター、長崎県総合水産試験場

要約

日本海西部から九州北西部にかけて分布するアカアマダイの資源状態を、同海域で、漁獲量データが長期的に利用できる島根県、福岡県および長崎県沿岸域の合計漁獲量および主要漁業の資源量指標値の変動傾向により評価した。2021年の当該漁獲量から現在の資源水準を低位と判断した。沖合底びき網漁業(2 そうびき・浜田以西)の標準化 CPUE、島根県、山口県および長崎県のはえ縄漁業の CPUE から求めた資源量指標値の最近 5 年間(2017~2021年)の推移から、資源動向は増加と判断した。低水準にある資源を回復させるため、漁獲量を減じた上で資源量指標値の変動傾向に合わせて漁獲することを管理目標とし、ABC を算定した。

管理基準	Target/	2023年ABC	漁獲割合	F 値
百炷茶毕	Limit	(トン)	(%)	「 11旦.
0.0.62021.1.11	Target	505	_	_
0.8·C2021·1.11	Limit	631	_	_

C2021 は 2021 年の漁獲量、Limit は、管理基準の下で許容される最大レベルの漁獲量、Target は、資源変動の可能性やデータ誤差に起因する評価の不確実性を考慮し、安全率 α を掛けた漁獲量である。ABCtarget = α ABClimit とし、係数 α には標準値 0.8 を用いた。

年	資源量 (トン)	親魚量(トン)	漁獲量 (トン)	F値	漁獲割合 (%)
2017	_	_	794	_	_
2018	_	_	723	_	_
2019	_	_	759	_	_
2020	_	_	680	_	_
2021	_	_	711	_	_

漁獲量は、外国漁業による我が国水域での漁獲量を含まない。2021 年の漁獲量は概数値。

水準:低位 動向:増加

本件資源評価に使用し	たデータヤッ	トけい下	のとおり
		1 1 1 1 1 1	V / (AU ')

データセット	基礎情報、関係調査等
漁獲量	漁業·養殖業生産統計年報(農林水産省統計部)
努力量	長崎農林水産統計年報(農林水産省)
	以西底びき網漁業漁獲成績報告書(水産庁)
	沖合底びき網漁業漁獲成績報告書(水産庁)
	東シナ海はえ縄漁業漁獲成績報告書(水産庁)
	島根県はえ縄漁業漁獲量・努力量集計(島根県水産技術センター)
	山口県はえ縄漁業漁獲量・努力量集計(山口県水産研究センター)
	長崎県はえ縄漁業漁獲量・努力量・全長組成集計(長崎県総合水産試験場)
	中国漁業統計年鑑(中国農業農村部漁業漁政管理局)
	水産統計(韓国海洋水産部)(2022年5月)
	台湾漁業種類別魚種別生産量年別統計(台湾行政院農業委員会漁業署)

1. まえがき

本種は青森県以南の我が国沿岸、東シナ海、黄海、南シナ海などに広く分布する。かつて我が国におけるアマダイ類(アカアマダイ・シロアマダイ・キアマダイ他)の漁獲の主体は東シナ海陸棚域を主漁場とするはえ縄漁業によるものであった。しかし、東シナ海陸棚域においては中国をはじめとする外国漁業の台頭が顕著となり、現在、我が国の漁業は本資源評価の対象である日本海西・九州北西部を主漁場としている。日本海西・九州北西部における漁獲の主対象はアカアマダイで、他のアマダイ類の漁獲は希である。

アカアマダイは日本海西・九州北西部における重要な漁業資源であり、資源の持続的利用を推進するため、平成18年より山口県が「山口県日本海海域あまだい類資源回復計画」に基づき釣針サイズ規制、小型魚の保護、種苗放流および休漁を実施した。また、平成22年には長崎県が「対馬海域アマダイ資源回復計画」を策定し、アマダイはえ縄漁具の制限、操業時間の制限および休漁等を行った。また、各種底びき網漁業によってもアカアマダイが漁獲されており、そのうち、以西底びき網漁業(以下、「以西底びき」という)および沖合底びき網漁業(以下、「沖底」という)を対象として、平成18年より「日本海西部・九州西海域底びき網漁業(2そうびき)包括的資源回復計画」に基づく漁具の制限、休漁および種苗放流が実施された。これらの資源回復計画における具体的な管理方策は資源管理指針・資源管理計画に引き継がれ、現在に至っている。

2. 生態

(1) 分布・回遊

アカアマダイは青森県以南の我が国沿岸から南シナ海まで広く分布するが、我が国周辺では、日本海西部海域から東シナ海にかけて、陸棚上〜陸棚縁辺域の水深80~130 m の海域を主分布域とする。本資源評価では島根県〜熊本県の漁船が対象とする範囲(ただし東シナ海陸棚域を除く)を対象海域とする(図1)。近年では我が国のアマダイ類の漁獲のうち9割以上をアカアマダイが占めている。

アカアマダイの成魚はなわばりを形成し、砂泥底で穴居生活を行う。このため、一般的

には成魚の大きな移動はないと考えられている(林 1985、Mitamura et al. 2005)。一方、日本海沿岸では、放流したアカアマダイの種苗は沖合域に移動することが報告されており(河野・山本 2016)、さらに東シナ海陸棚域のアカアマダイが成長に伴い、底質に応じて移動することを示唆した研究結果もある(山下 2007)。以上のことから、成長に伴う深度方向の移動は想定されるものの、東シナ海と日本海を行き来する回遊は想定されていない。ただし、東シナ海の中国沿岸と我が国沿岸のアカアマダイに遺伝的な差が見られないことが知られており(Nohara et al. 2010、柳本ほか 2010)、アカアマダイ卵・仔稚魚の輸送に関する粒子追跡実験(石川ほか 2019)から、東シナ海陸棚上から我が国周辺海域へと卵仔稚が輸送される可能性も考えられている。一方で、東シナ海域の群と山口県日本海域の群では生物特性に差違が見られることから、主要な産卵場には違いがある可能性も示唆されている(河野・天野 2020)。

(2) 年齢·成長

アカアマダイは雌に比べ雄の成長が速く、山口県日本海域における雌雄それぞれの全長は1歳で149 mm、153 mm、3歳で261 mm、280 mm、5歳で318 mm、362 mm となる(図2、表1、河野・天野2020)。寿命は雄で11歳、雌で9歳程度とされる。

(3) 成熟·産卵

山口県日本海域におけるアカアマダイの雌雄それぞれの最小成熟全長は 244 mm、285 mm、50%成熟全長は 313 mm、347 mm と報告されている (河野・天野 2020)。50%成熟全長は雌雄ともに 4~5 歳時に相当する。対馬北東海域でのアカアマダイの産卵期は 7~11 月 (水産総合研究センター 2002)、日本海南西海域では 6~10 月 (河野・天野 2008)である。また、日本海南西海域のアカアマダイは、水深 100~130 m の海域で産卵すると推定されている (河野・天野 2008)。

(4) 被捕食関係

アカアマダイの主要な餌生物は魚類、甲殻類、多毛類であり、頭足類、貝類、棘皮動物 も捕食する(山下・岡本 2000、山下ほか 2000)。ヒラメ等底棲の大型魚類に捕食される。

3. 漁業の状況

(1) 漁業の概要

我が国のアカアマダイを対象とする漁業の主体は、はえ縄漁業である(図3)。アカアマダイを対象とするはえ縄漁業の主漁場は、島根県では島根半島沖、山口県では見島周辺から対馬東方にかけての海域、長崎県では対馬周辺海域および北松海域である。また、北松海域では2003年以降、刺網漁業がまとまった量のアカアマダイを漁獲している。アカアマダイは沖底でも漁獲されるが、漁獲物に占める小型(低年齢)個体の割合がはえ縄漁業と比較して高く(河野2011)、小型個体は単価が低いため主要な漁獲対象にはなっていない。

なお、東シナ海では、1950年代から我が国のはえ縄漁船が広く操業するようになり、1970年には山口県所属船だけで 1.2万トン以上のアマダイ類が漁獲された。しかし、周辺国との漁場の競合や資源状態の悪化により、我が国のあまだいはえ縄漁業は急激に衰退し(山

下 2004、2005)、東シナ海におけるアマダイ類の漁獲の大半は中国の底刺網漁業や底びき網漁業によるものとなった(程ほか 2006)(補足資料 2)。

(2) 漁獲量の推移

島根、山口、福岡、佐賀、長崎、熊本の6県によるアマダイ類の漁獲量を図4、表2に示す。ただし、この値には、当資源評価の対象海域である日本海西部から九州北西部にかけての海域以外(東シナ海陸棚域)での漁獲量が含まれている。2000年以降は、漁獲の9割以上がアカアマダイであると推測される。6県の総漁獲量は、漁獲量の利用が可能な1995年以降、2000年にかけて急減したが、これは主に東シナ海において、外国漁船の台頭や資源状態の悪化、日中漁業協定(新協定)の影響で、あまだいはえ縄漁業と以西底びきが衰退したことによる。2000~2010年にもゆるやかに漁獲量の減少が見られたが、2010年以降は700~800トン台で推移している。2021年の総漁獲量は、過去最低値であった前年をやや上回る715トンとなった。県別では山口県と長崎県による漁獲が突出しており、ついで島根県が多い。

本資源評価の対象となる日本海西・九州北西部海域の漁獲量は、2004年以降に整備されている東シナ海陸棚上~陸棚斜面域の漁獲量を上記から減じて算出している(表 3)。日本海西・九州北西部での漁獲量は、2010年以降は750トン前後で推移していたが、2021年は、過去最低値(680トン)であった前年をやや上回る711トンであった。6県によるアマダイ類の総漁獲のうち、評価対象海域での漁獲が概ね9割以上、特に2010年以降は95%以上を占めている。

沖底 2 そうびき (浜田以西) による漁獲量は、2016 年に 139 トンとやや高い値を示した後、2019 年の 77 トンまで減少したが、以降は増加に転じ、2021 年には 112 トンとなった (図 5)。

(3) 漁獲努力量

島根県東部に水揚げするはえ縄漁業(島根はえ縄)、山口県主要市場に水揚げするはえ縄漁業(山口はえ縄)および長崎県対馬海域の標本漁協におけるはえ縄漁業(長崎はえ縄)のアマダイ類に対する漁獲努力量(隻数・日数)は、いずれも減少を続けている(図 6)。 沖底2そうびき(浜田以西)のアマダイ類に対する有効努力量は、1990~2004年は概ね横ばいで推移していたが、2005年以降は減船等の影響で減少傾向にある(図 5)。

4. 資源の状態

(1) 資源評価の方法

補足資料1にアカアマダイの資源評価の流れを示す。本資源評価では、日本海西・九州 北西部において上述の6県により利用されるアカアマダイ資源を評価した。なお、本資源 評価では、農林統計におけるあまだい類の漁獲量をアカアマダイの漁獲量として扱った。 各県の漁獲量は1995年から得られているが、この漁獲統計は、本資源評価の対象海域外で ある東シナ海陸棚域における漁獲も含んだ値となっている(表 3)。したがって、長期的に、 評価対象海域に限った統計値が利用できる島根県、福岡県および長崎県沿岸域の漁獲量(図 7、表 4)をもとに、資源水準を判断した。 なお、島根県および福岡県では、全ての漁獲が日本海西・九州北西部のものであるとみなした。また長崎県については、東シナ海はえ縄漁業の詳細な情報が利用できない 2009 年までは、長崎県沿岸域での操業が極めて少ないと考えられる長崎有明海区、橘湾海区、西彼海区の漁獲量を長崎県の総漁獲量から減じた値を長崎県沿岸域の漁獲量とした。 2010 年以降は、長崎県の総漁獲量から以西底びきおよび沿岸操業を除く東シナ海はえ縄漁業による漁獲量を減じた値を長崎県沿岸域の漁獲量とした。

動向の判断には、以下の式から求めた資源量指標値を用いた。

資源量指標值 $y = \sqrt[4]{CPUE_{pairtrawl,y} \times CPUE_{shimane,y} \times CPUE_{yamaguchi,y} \times CPUE_{nagasaki,y}}$

ここで、*CPUEpairtrawl,y、CPUEshimane,y、CPUEyamaguchi,y、CPUEnagasaki,y* はそれぞれ y 年における沖底 2 そうびきの標準化 CPUE (補足資料 3)、島根はえ縄の CPUE (kg/隻・日)、山口はえ縄の CPUE (kg/隻・日) および長崎はえ縄の CPUE (kg/隻・日) である (図8、表 5)。

(2) 資源量指標値の推移

資源量指標値は、2007~2018 年までほぼ横ばいで推移したが、以降は急激に上昇し、3年連続で期間内の最高値を更新した。従って、最近5年間(2017~2021年)でも増加傾向といえる(図9、表5)。

(3) 漁獲物の年齢(体長)組成

長崎はえ縄(主要港)による漁獲物は、2017年を除き、全長 320 mm 階級を峰とする単峰形に近い全長組成で推移している。この階級は雌の漁獲主体にほぼ対応している。雄の漁獲主体はやや大きく、2018年以降は360 mm 階級での漁獲割合が最も高い。これらの階級は雌雄それぞれの5歳時の全長に相当する(図10)。

(4) 資源の水準・動向

島根県、福岡県および長崎県沿岸域の合計漁獲量の最小値(364 トン)と最大値(804 トン)の間を3等分し、511 トンを低位と中位、657 トンを中位と高位を区分する基準値とした(図7、表4)。2021年の当該漁獲量の合計は402 トンであるため、資源水準を低位と判断した。また最近5年間(2017~2021年)の資源量指標値の変動から、資源動向を増加と判断した(図9、表5)。

(5) 種苗放流効果

2020年度、島根県では 0.3 万尾、山口県では 7.7 万尾(うち 1.6 万尾は瀬戸内海側での放流)のアカアマダイの種苗放流が行われた(水産庁増殖推進部・水産研究・教育機構・全国豊かな海づくり推進協会 2022)。山口県ではアカアマダイの放流効果について調査が行われ、回収率が年によって大きく変動する (0.1~10.2%) ことが報告されている (河野 2017)。本資源評価の対象海域外である宮崎県でもアカアマダイ種苗が放流されている。

5. 2023 年 ABC の算定

(1) 資源評価のまとめ

日本海西・九州北西部のアカアマダイについて、水準・動向を低位・増加と判断した。 再生産過程に不明な点があるものの、資源水準が低位にあり、これを回復させるために、 漁獲を抑制することが必要と判断する。漁獲量を減じたうえで、資源量指標値の変動に合 わせて漁獲する管理目標が妥当である。

(2) ABC の算定

令和 4 年度 ABC 算定のための基本規則 2-1)に基づき、2021 年の日本海西・九州北西部 における漁獲量に、資源水準で決まる係数および資源量指数の変動を基に算定した係数を乗じて求めた漁獲量を 2023 年 ABC とした。

 $ABClimit = \delta_1 \times C2021 \times \gamma_1$ $ABCtarget = ABClimit \times \alpha$ $\gamma_1 = 1 + k \quad (b/I)$

ここで、C2021 は 2021 年(最新年)の日本海西・九州北西部における漁獲量、 δ_1 は資源水準で決まる係数である。k は係数、b と I はそれぞれ最近 3 年の資源量指標値の傾きと平均値であり、 γ_1 はこれらにより算出される(平松 2004)。 α は安全率である。

資源水準が低位であることから、漁獲量を減じて資源を回復させることが必要と判断し、資源水準に基づく係数 δ_1 を資源水準が低位のときの標準値 0.8 とした。日本海西・九州北西部における漁獲量 C2021 は 711 トンであった(表 3)。係数 k は標準値の 1.0 とした。 b は $2019 \sim 2021$ 年の資源量指標値の傾き (1.50)、I は同期間の資源量指標値の平均値 (13.71) であり、 γ_1 は 1.11、2023 年の ABClimit は 631 トンと計算された。

管理基準	Target/ Limit	2023 年 ABC (トン)	漁獲割合 (%)	F値
0.0 (2021 1.11	Target	505		_
0.8·C2021·1.11	Limit	631	_	_

C2021 は日本海西・九州北西部における 2021 年の漁獲量、Limit は、管理基準の下で許容される最大レベルの漁獲量、Target は、資源変動の可能性やデータ誤差に起因する評価の不確実性を考慮し、安全率 α を掛けた漁獲量である。ABCtarget = α ABClimit とし、係数 α には標準値 α 0.8 を用いた。

(3) ABC の再評価

昨年度評価以降追加されたデータセット	修正・更新された数値
2020 年漁獲量確定値	2020 年漁獲量の確定
2021 年漁獲量暫定値	2021 年漁獲量
2021年はえ縄漁獲量・努力量(島根、山	2021 年はえ縄 CPUE、資源量指標値(島根、
口、長崎)	山口、長崎)
2021 年沖底 2 そう漁獲成績報告書データ	沖底2そうびきの標準化CPUE、資源量指標
	値

評価対象年	公田甘淮	F	資源	ABClimit	ABCtarget	漁獲量
(当初・再評価)	管理基準	値	量	(トン)	(トン)	(トン)
2021年(当初)	0.8·C2019·1.05		_	636	509	
2021 年	0.8·C2019·1.05			637	510	
(2021年再評価)	0.8 C2019 1.03			037	310	
2021 年	0.8·C2019·1.07			650	520	711
(2022 年再評価)	0.8.02019.1.07			630	320	/11
2022年(当初)	0.8·C2020·1.09		_	588	471	
2022 年	0.9 (2020 1.10			500	470	
(2022 年再評価)	0.8·C2020·1.10			598	478	

沖底 2 そうびきの CPUE 標準化手法の変更に伴い、資源量指標値が更新され、2022 年再評価における γ_1 が若干変化した。

6. ABC 以外の管理方策の提言

本資源に対する主漁法である、はえ縄漁業については島根県東部や山口県でたい針 11 号以上、長崎県対馬海域ではたい針 11 号同等以上とする等の漁具規制が行われており、さらに東シナ海はえ縄漁業従事船等が所属する西日本延縄漁業連絡協議会では、鯛縄針 12 号やムツ針 14 号以上とする自主規制が行われている。また、はえ縄と比べ、小型個体の漁獲割合が高いとされる沖底(下関を根拠地とする)でも、2018 年 8 月よりコッドエンド天井部に小型魚逃避ウインドウが設けられることとなった。

また、東シナ海では年間 2 万トン以上のアマダイ類(アカアマダイ主体と考えられる)が外国漁業により漁獲されており、本種の分布の主体は東シナ海にあるといえることから(補足資料 2)、東シナ海において効果的な資源管理が行われ、アカアマダイ資源が増大すれば、対馬暖流による卵稚仔の輸送を通じて、日本海西・九州北西部への加入状況も好転し、徐々に本資源の資源水準が回復する可能性もある。

なお、本資源評価で得られた資源量指標値は 2019 年以降、大幅な増加傾向を示しており、近年の加入状況が良好であったと推察される。アカアマダイでは、周期的に卓越年級群が発生し、資源変動および漁獲量に影響を与えることが知られているため (Kitahara 1985)、本資源においても各年級の加入豊度のモニタリングが可能となれば、数年先までの資源動向を踏まえた資源管理に繋げることが出来るであろう。

7. 引用文献

- 石川和雄・伊藤幸彦・中村啓彦・仁科文子・齋藤友則・渡慶次力 (2019) アカアマダイ卵・ 仔稚魚の東シナ海から宮崎県沿岸域への輸送に関する粒子追跡実験. 水産海洋研究, 83,93-103.
- 程 家驊·張 秋華·李 圣法·鄭 元甲·李 建生 (2006) 「東黄海漁業資源利用」. 上海科学技術出版社,上海,326 pp.
- 林 泰行 (1985) 東シナ海産アカアマダイの漁業生物学的研究. 山口県外海水試研報, **20**, 1-95.
- 平松一彦 (2004) オペレーティングモデルを用いた ABC 算定ルールの検討. 日水誌, **70**, 879-883.
- 河野光久 (2011) 日本海南西海域における沖合底びき網によるアカアマダイの漁獲実態. 山口県水産研究センター研報, 9, 105-110.
- 河野光久 (2017) 山口県日本海沿岸域に放流したアカアマダイ人工種苗の放流効果. 山口県水産研究センター研報, 14, 51-53.
- 河野光久・天野千絵 (2008) 日本海南西海域におけるアカアマダイの産卵期・産卵場および仔魚の出現. 山口県水産研究センター研報, 6, 31-36.
- 河野光久・山本健也 (2016) 山口県日本海沿岸域に放流したアカアマダイ人工種苗の再捕率および移動. 山口県水産研究センター研報, 13, 1-4.
- 河野光久・天野千絵 (2020) 山口県日本海域におけるアカアマダイの成長と成熟. 山口県水産研究センター研報, 17, 1-8.
- Kitahara T (1985) Characteristics of yearly fluctuation in the size of tile Fish population in Wakasa Bay and its mean generation time. Nippon Suisan Gakkaishi **51**, 239-246.
- Mitamura H., N. Arai, Y. Mitsunaga, T. Yokota, H. Takeuchi, T. Tsuzaki and M. Itani (2005) Directed movements and diel burrow fidelity patterns of red tilefish, *Branchiostegus japonicus*, determined using ultrasonic telemetry. Fish. Sci., **71**, 491-498.
- Nohara T., H. Takeuchi, T. Tsuzaki, N. Suzuki, O. Tominaga and T. Seikai (2010) Genetic variability and stock structure of red tilefish *Branchiostegus japonicus* inferred from mtDNA sequence analysis. Fish. Sci., **76**, 75-81.
- 水産総合研究センター (2002) 平成 13 年度水産研究成果情報, 162-163.
- 水産庁増殖推進部・水産研究・教育機構・全国豊かな海づくり推進協会 (2022) 県別・機関 区分別種苗放流実績 (人工種苗) - 魚類. 令和2年度栽培漁業用種苗等の生産・入手・ 放流実績 (全国) 総括編,72.
- 山下秀幸 (2004) 東シナ海産アカアマダイの水揚実態と Y/R 解析. 日水誌, 70, 16-21.
- 山下秀幸 (2005) 東シナ海産アカアマダイに対する底延縄と立延縄の漁獲物体長組成および漁場利用について. 日水誌, **71**, 39-43.
- 山下秀幸 (2007) 東シナ海産アカアマダイの体長組成の海域差. 日水誌, 73, 1074-1080.
- 山下秀幸・岡本征明 (2000) 平成 11,12 年度資源管理型沖合漁業推進総合調査 (東シナ海 フグ類等) あまだい調査報告書.海洋水産資源開発センター,22 pp.
- 山下秀幸・汐留忠俊・吉川 脂・田川 勝 (2000) 平成 10 年度 資源管理型沖合漁業推進総合調査 (東海あまだい) 報告書. 海洋水産資源開発センター, 39 pp.

柳本 卓・山下秀幸・酒井 猛・明神寿彦・小林敬典 (2010) DNA 多型分析によって明らかになったアカアマダイの集団構造. DNA 多型, **18**, 127-130.

(執筆者:井関智明、酒井 猛、五味伸太郎)

図1. 日本海西・九州北西部におけるアカアマダイの分布

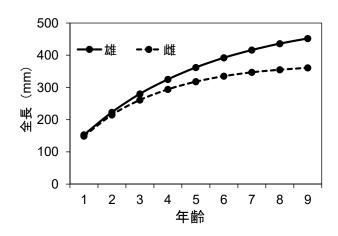


図 2. アカアマダイの年齢と成長

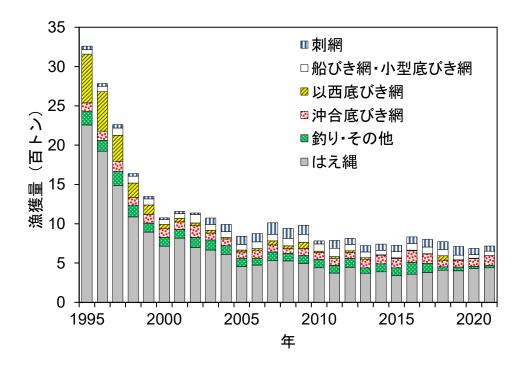


図 3. アマダイ類の漁業種類別漁獲量(東シナ海陸棚上~陸棚斜面域での操業を含む) 漁業・養殖業生産統計年報(2021年は概数値)による。

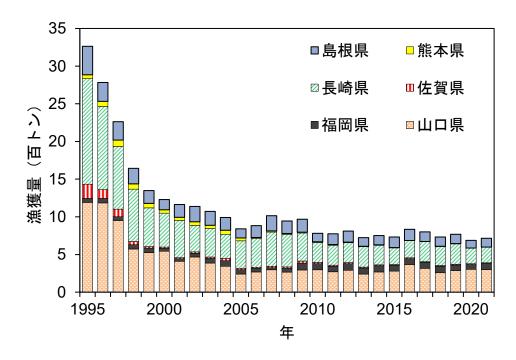


図 4. アマダイ類の県別漁獲量(東シナ海陸棚上〜陸棚斜面域での操業を含む) 漁業・養殖業生産統計年報(2021年は概数値)による。

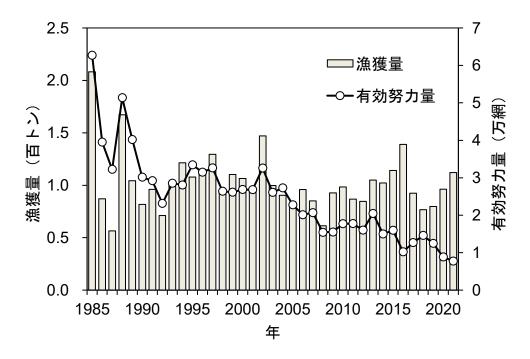


図 5. 沖合底びき網漁業 (浜田以西、2 そうびき) のアマダイ類漁獲量と有効努力量

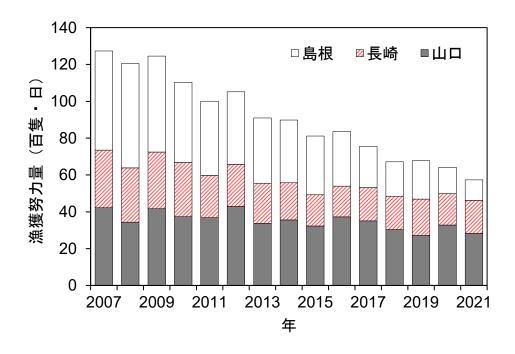


図 6. はえ縄漁業の努力量(島根県東部で水揚げするはえ縄漁業、山口県主要市場に水揚げするはえ縄漁業および長崎県対馬海域におけるはえ縄漁業の漁獲努力量)

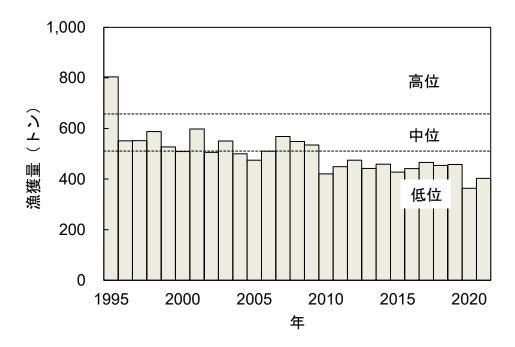


図 7. 水準判断に供した島根県、福岡県、長崎県沿岸域におけるアマダイ類の合計漁獲量

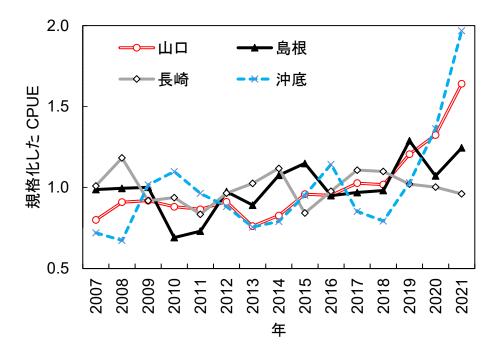


図 8. アマダイ類に対する沖合底びき網漁業(浜田以西、2 そうびき)の標準化 CPUE および島根・山口・長崎県のはえ縄漁業 CPUE (kg/9) (各年の CPUE を 2007~2021年の CPUE の平均値で規格化した値)

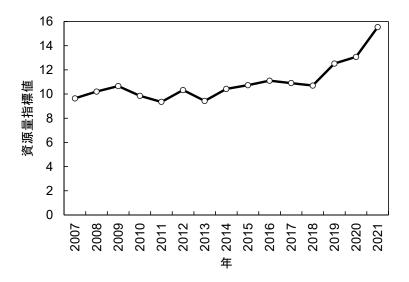


図 9. 動向判断に供したアカアマダイ日本海西・九州北西部の資源量指標値

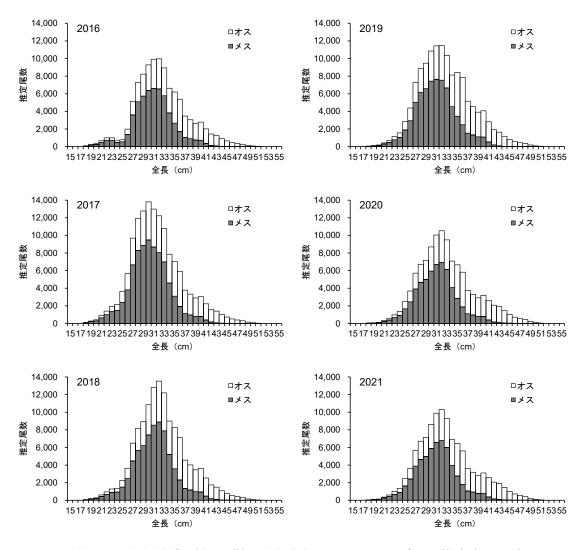


図 10. 長崎県のはえ縄漁業(主要港)で漁獲されたアカアマダイの推定全長組成

表 1. アカアマダイの年齢と成長

	1歳	2歳	3 歳	4 歳	5 歳	6歳	7歳	8歳	9歳
雄 TL	153	223	280	325	362	392	416	436	452
雌 TL	149	215	261	294	318	335	347	355	361

TL: 全長 (mm)。

表 2. アマダイ類の県別漁獲量(単位:トン)

年	島根県	山口県	福岡県	佐賀県	長崎県	熊本県	6 県計
1995	377	1,190	54	188	1,401	52	3,262
1996	251	1,185	58	118	1,104	67	2,783
1997	243	950	52	99	833	85	2,262
1998	206	574	57	41	694	71	1,643
1999	170	525	62	19	512	60	1,348
2000	134	544	38	17	449	46	1,228
2001	169	409	35	15	493	42	1,163
2002	204	467	50	17	352	48	1,138
2003	185	386	63	19	376	43	1,072
2004	171	344	74	29	321	53	992
2005	121	239	61	19	363	37	840
2006	157	267	51	14	382	13	884
2007	201	297	27	20	455	14	1,014
2008	165	265	53	18	431	12	944
2009	170	295	91	29	371	11	967
2010	114	297	80	19	263	9	782
2011	141	270	73	15	265	10	774
2012	146	291	86	16	264	8	811
2013	113	240	81	12	270	7	723
2014	124	267	83	13	260	5	752
2015	140	280	77	11	220	4	732
2016	148	368	76	13	226	3	834
2017	126	317	81	8	265	3	800
2018	122	256	88	10	253	3	732
2019	123	286	75	11	269	4	768
2020	101	304	64	9	206	3	687
2021	116	299	85	7	206	2	715

漁業・養殖業生産統計年報(2021年は概数値)の値。

表 3. アマダイ類の海域別漁獲量(単位:トン)

年	島根~熊本6県 漁獲量合計*1	日本海西~九州北西部*2 (ABC の算出に供した漁獲量)	東シナ海陸棚上〜 陸棚斜面域*3
2004	992	959	33
2005	840	778	62
2006	884	828	56
2007	1,014	929	85
2008	944	883	61
2009	967	870	97
2010	782	745	37
2011	774	744	30
2012	811	790	21
2013	723	701	22
2014	752	744	8
2015	732	722	10
2016	834	825	9
2017	800	794	6
2018	732	723	9
2019	768	759	9
2020	687	680	7
2021	715	711	4

^{*1:}漁業・養殖業生産統計年報(2021年は概数値)。

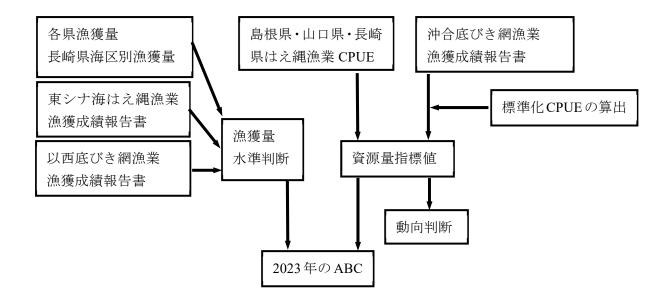
^{*2:}島根~熊本6県漁獲量合計から東シナ海陸棚上~陸棚斜面域の漁獲量を減じた値。

^{*3:}沿岸操業を除く東シナ海はえ縄漁業および以西底びき網漁業。

表 4. 水準判断に供した島根県、福岡県、長崎県沿岸域における漁獲量(単位:トン)

年	島根県	福岡県	長崎県沿岸域*	⇒ 1
			艾阿尔伯序域	計
1995	377	54	373	804
1996	251	58	242	551
1997	243	52	257	552
1998	206	57	325	588
1999	170	62	295	527
2000	134	38	337	509
2001	169	35	394	598
2002	204	50	252	506
2003	185	63	302	550
2004	171	74	255	500
2005	121	61	293	475
2006	157	51	302	510
2007	201	27	340	568
2008	165	53	331	549
2009	170	91	274	535
2010	114	80	226	420
2011	141	73	235	449
2012	146	86	243	475
2013	113	81	248	442
2014	124	83	252	459
2015	140	77	210	427
2016	148	76	217	441
2017	126	81	259	466
2018	122	88	244	454
2019	123	75	260	458
2020	101	64	199	364
2021	116	85	201	402

^{*}長崎県沿岸域の漁獲量は、2009 年までは長崎県沿岸域での操業が極めて少ないと考えられる長崎有明海区、橘湾海区、西彼海区の漁獲量を長崎県の総漁獲量から減じた値、2010年以降は長崎県の総漁獲量から東シナ海はえ縄漁業による東経 128 度 30 分以西の漁獲量および以西底びき網漁業の漁獲量を減じた値。


表 5. 動向判断に供した資源量指標値およびその算出に用いた各 CPUE

年 標準化 島根はえ縄 CPUE 山口はえ縄 CPUE 長崎はえ縄 CPUE CPUE (kg/隻・日) (kg/隻・日) (kg/隻・日) (kg/隻・日) 1993 0.75 1994 1.15	次 資源量* 指標値
1993 0.75	指標値
1004 115	
1994 1.13	
1995 1.25	
1996 1.15	
1997 1.24	
1998 1.12	
1999 1.10	
2000 1.11 4.27	
2001 0.86 4.59	
2002 1.48 6.42	
2003 1.34 5.52 46.28	
2004 1.37 5.08 37.80	
2005 1.06 3.76 36.26	
2006 1.17 4.95 31.28	
2007 1.22 7.86 25.97 34.78	9.64
2008 1.14 7.92 29.51 40.73	10.20
2009 1.72 7.97 29.82 31.62	10.66
2010 1.86 5.50 28.60 32.29	9.86
2011 1.63 5.82 28.08 28.74	9.35
2012 1.49 7.76 29.59 33.21	10.33
2013 1.28 7.10 24.71 35.32	9.43
2014 1.34 8.56 26.84 38.51	10.43
2015 1.61 9.15 31.12 29.00	10.74
2016 1.93 7.56 30.89 33.65	11.10
2017 1.44 7.72 33.33 38.14	10.91
2018 1.34 7.82 33.04 37.85	10.70
2019 1.74 10.26 39.12 35.17	12.52
2020 2.31 8.53 42.99 34.51	13.07
2021 3.33 9.92 53.25 33.08	15.53

^{*}資源量指標値(2007年以降)は、各 CPUE の相乗平均(4乗根)。

補足資料 1 資源評価の流れ

使用したデータと資源評価の関係を以下のフローに簡潔に記す。

補足資料 2 我が国以外による漁獲

本報告では日本海西・九州北西部におけるアカアマダイ資源を評価しているが、本種の分布の主体は東シナ海域にあり、アカアマダイを含むアマダイ類を最も多く漁獲している国は中国である。中国による 2020 年のアマダイ類の漁獲量は我が国の漁獲量を大きく上回る 3.9 万トン (補足表 2-1) であった。東シナ海陸棚域を主漁場とする浙江省、福建省のアマダイ類の漁獲はアカアマダイが主体で、沿岸域ではシロアマダイも漁獲されると推測される。

韓国の 2021 年におけるアマダイ類の漁獲は、1,144 トンであった(補足表 2-1)。なお、2016 年以降、日韓暫定水域を除く我が国 EEZ 内での韓国による漁獲は許可されていない。また、韓国、台湾で漁獲されるアマダイ類は、ほぼアカアマダイであると推測される。

補足表 2-1. 関係国・地域によるアマダイ類の漁獲量(単位:トン)

年	中国	 うち浙江省	うち福建省	·韓国	台湾
1980					751
1981					855
1982					531
1983					1,172
1984					770
1985					485
1986					705
1987					568
1988					439
1989					382
1990					643
1991					492
1992					2,025
1993					1,879
1994					1,299
1995					579
1996					1,227
1997					626
1998					372
1999				1,651	496
2000				1,664	448
2001				1,049	512

補足表 2-1. 関係国・地域によるアマダイ類の漁獲量(トン)(つづき)

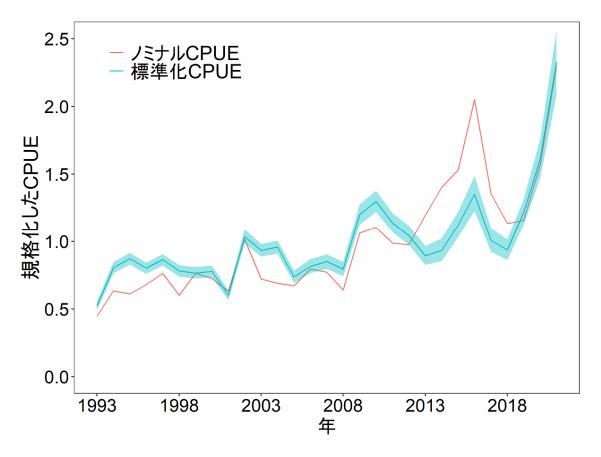
年	中国	うち浙江省	うち福建省	韓国	台湾
2002		у з іў і — д)) IM/E I	1,341	306
2003	52,989	16,041	5,961	1,303	385
2004	64,996	15,894	1,880	1,405	127
2005	67,687	13,635	6,830	1,186	146
2006	56,213	13,539	2,550	1,537	85
2007	52,477	11,151	2,962	1,570	70
2008	40,795	13,231	7,498	1,073	47
2009	40,437	9,456	5,712	1,215	130
2010	37,263	10,349	5,158	1,549	48
2011	40,729	12,408	5,306	923	42
2012	43,624	15,891	4,496	1,307	
2013	42,631	15,673	4,950	1,766	
2014	42,150	15,306	4,693	1,939	
2015	43,514	16,736	4,910	1,901	
2016	42,993	16,014	4,818	1,826	
2017	45,842	16,725	4,224	1,600	
2018	41,681	15,806	4,256	1,222	
2019	39,778	15,590	4,000	1,291	
2020	39,043	14,684	5,342	940	
2021				1,144	

中国漁業統計年鑑、韓国水産統計および台湾漁業種類別魚種別生産量年別統計の値。中国の値に香港特別行政区の値は含まず。2012年以降、台湾の統計品目からアマダイ類が除外された。

補足資料3 2 そうびき沖合底びき網漁業(沖底2 そうびき)における CPUE の標準化

アカアマダイを対象とする漁業の一つである2そうびき沖合底びき網漁業(沖底2そうびき)の日別・漁船別CPUEについて、標準化を実施した。なお、標準化に際しては、水深も説明変数に導入することで、季節・場所の変化の影響に加え、水深の違いによる影響も統計的に除去した。

使用した沖底 2 そうびきデータは、1993~2021 年における緯度経度 10 分漁区解像度の日別・漁船別漁獲量と網数である。海洋環境データとしては、ETOPO1 global relief model から漁業データの漁区中央位置における水深を切り出して用いた。なお、今回使用したデータの CPUE(kg/網)は年平均で 50~75%のゼロキャッチ(操業しているが漁獲量は 0)を含む連続値のため、標準化モデルにはデルタ型一般化線形モデル(Lo et al. 1992)を用いた。このモデルは、有漁となる確率を予測するモデル(有漁確率モデル)と有漁時の CPUEを予測するモデル(有漁時 CPUE モデル)の 2 つを別々に解析するものである。それぞれのモデルの誤差分布には二項分布と対数正規分布を設定した。説明変数には、年、季節、海区、水深の固定効果(すべてカテゴリカル変数)と、年と海区の交互作用を設定した。海区は、沖底 2 そうびきの主漁場の変遷を考慮し(川内ほか 2020)、東経 129 度 30 分(対馬東岸付近)の東西で 2 つに分割した。これらの説明変数のうち、多重共線性の高い説明変数(いずれのモデルでも年と海区の交互作用)を取り除いた上で、各モデルにおける最も複雑なモデル候補を作成した。ベイズ情報量規準 (BIC) を用いた総当たり法により、モデル選択を行った。


解析の結果、BICが最小となる候補モデル(ベストモデル)は次のように選択された。

有漁確率モデル:有漁確率 \sim 切片 + 年 + 季節 + 海区 + 水深 有漁時 CPUE モデル: $\ln (CPUE) \sim$ 切片 + 年 + 季節 + 海区 + 水深

ベストモデルにおいて、有漁か否かの判別性能と、有漁時 CPUE の残差の正規性・等分散性に大きな問題がないことを確認し、これらのモデルを用いて標準化 CPUE を計算した。標準化 CPUE は概ねノミナル CPUE と同様に推移し、2008 年までは低値にあって概ね横ばいであった。以降は周期的にやや大きな増減を繰り返したが、直近3年で急増している(補足図 3-1)。

引用文献

- 川内陽平・依田真里・青沼佳方 (2020) 令和元 (2019) 年度キダイ日本海・東シナ海系群の 資源評価. 令和元年度我が国周辺水域の漁業資源評価, 水産庁・水産研究・教育機構,27 pp. http://abchan.fra.go.jp/digests2019/details/201951.pdf
- Lo, N. C. H., L. D. Jacobson and J. L. Squire (1992) Indices of relative abundance from fish spotter data based on Delta-Lognormal models. Can. J. Fish. Aquat. Sci., 49, 2515-2526.

補足図 3-1. 沖底 2 そうびきの標準化 CPUE とノミナル CPUE 影は標準化 CPUE の 95% 信頼区間であり、データのブートストラップサンプリングとベストモデルによる標準化 CPUE の計算を 1,000 回繰り返して求めた。