令和4(2022)年度ムシガレイ日本海南西部系群の資源評価

水産研究・教育機構 水産資源研究所 水産資源研究センター

参画機関:鳥取県水産試験場、島根県水産技術センター、山口県水産研究センター


要約

本系群の資源量について、2そうびき沖合底びき網の標準化 CPUE を考慮したコホート解析により推定した。本系群の漁獲量は、1970 年代末の約 5,000 トンをピークとし、その後増減を伴いながらも 1990 年代後半には約 1,000 トンにまで減少した。2009 年以降はさらに減少しており、2021 年の漁獲量は前年を 129 トン下回る 306 トンであった。資源量は 2009年までは 4,000~5,500 トンで推移していたが、その後減少し、2016年には 1,767 トンとなった。2017年以降は増加傾向を示しており、2021年の資源量は 1,968 トンと推定された。親魚量も 2017年以降緩やかに増加しており、2021年は 1,485 トンと推定された。

令和3年10月に開催された「管理基準値等に関する研究機関会議」において、本系群の再生産関係にはホッケー・スティック型が適用されており、これに基づき推定された最大持続生産量(MSY)を実現できる水準の親魚量(SBmsy)は4,000トンである。この基準に従うと、本系群の2021年の親魚量は、MSYを実現する水準を下回る。また、本系群に対する2021年の漁獲圧はMSYを実現する水準の漁獲圧(Fmsy)を下回る。親魚量の動向は直近5年間(2017~2021年)の推移から「増加」と判断される。

本系群では、管理基準値や将来予測など、資源管理方針に関する検討会の議論をふまえて最終化される項目については管理基準値等に関する研究機関会議において提案された値を暫定的に示した。

MSY、親魚量の水準と動向、および ABC								
MSYを実現する水準の親魚量	40 百トン							
2021年の親魚量の水準	MSY を実現する水準を下回る							
2021年の漁獲圧の水準	MSY を実現する水準を下回る							
2021年の親魚量の動向	増加							
最大持続生産量(MSY)	15 百トン							
2023 年の ABC	-							

コメント:

- ・ABCは、本系群の漁獲管理規則が「資源管理方針に関する検討会」で取り纏められ、「水産政策審議会」を経て定められた後に算定される。
- ・近年の漁獲圧は低く、資源量は緩やかな増加傾向を示している。

近年の資源	近年の資源量、親魚量、漁獲量、漁獲圧、および漁獲割合												
年	資源量 (トン)	親魚量 (トン)	漁獲量 (トン)	F/Fmsy	漁獲割合 (%)								
2017	1,794	1,214	485	1.00	27								
2018	1,893	1,298	553	1.12	29								
2019	1,896	1,321	532	1.03	28								
2020	1,902	1,349	435	0.76	23								
2021	1,968	1,485	306	0.48	16								
2022	2,172	1,694	518	0.73	24								
2023	2,187	1,570	-	-	-								

^{・2022}年、2023年の値は将来予測に基づく平均値である。

1. データセット

本件資源評価に使用したデータセットは以下のとおり。

データセット	基礎情報、関係調査等
漁獲量 年齢別·年別漁獲尾数	主要港水揚げ量(山口県、島根県、鳥取県) 沖合底びき網漁業漁獲成績報告書(水産庁) 市場測定(島根県)
自然死亡係数(M)	年あたり M=0.35 を仮定
漁獲努力量、資源量指数	沖合底びき網漁業漁獲成績報告書(水産庁)*

^{*}はチューニング指数の算出に使用した情報・調査である。

2. 生態

(1) 分布·回遊

ムシガレイは日本近海の大陸棚暖水域に分布する。日本海側では青森県〜対馬までの広範囲に分布するが、山口県および島根県沖の日本海南西海域(東経 135°以西)が主分布域である(図 2-1、今岡・三栖 1969)。本種は韓国でも漁獲されているが詳細が不明であることから、本評価では、日本海南西海域において日本漁船によって漁獲される群を評価対象として取り扱っている。対馬以東では、秋に対馬北東から見島北西の海域に分布が集中するが、他の時期には分散し、対馬以西では、春〜夏に対馬西海域に滞留して秋には南西〜回遊、越冬する(三栖ほか 1973)。幼魚は浅海に生息し、成長にともない沖合へ移動する(今岡 1977)。

(2) 年齢·成長

全長は雌雄それぞれ 1 歳で 10.9 cm、11.4 cm、2 歳で 16.5 cm、17.2 cm、3 歳で 21.2 cm、21.4 cm、4 歳で 25.2 cm、24.5 cm となる。5 歳以降は雌雄差が大きくなり、5 歳で雌雄それぞれ 28.6 cm、26.9 cm、6 歳で 31.6 cm、28.6 cm、7 歳で 34.1 cm、29.8 cm となる(図 2-2、今井・宮崎 2005)。寿命は 7 歳程度と推察される。

(3) 成熟·産卵

成熟開始年齢は雄2歳、雌3歳である。産卵盛期は、対馬以西では1月下旬~2月下旬、対馬以東では2月上旬~3月上旬である(今岡1971)。親魚量の計算では、2歳の成熟率を0.4、3歳以上の成熟率を1とした。

(4) 被捕食関係

全長約 12 cm までは小型甲殻類を主要な餌とし、約 12 cm 以上ではエビ・カニ類、イカ類などを捕食する。さらに全長約 18 cm から魚類を捕食する (今岡 1972)。島根県の漁獲物を対象とした精密測定・胃内容物観察では、エンコウガニ類、エビジャコ類が高い頻度で出現している (島根県水産技術センター 未発表)。被食については不明である。

3. 漁業の状況

(1) 漁業の概要

日本海南西海域におけるムシガレイの漁獲の殆どは底びき網(1 そうびきおよび2 そうびき沖合底びき網(以下、「沖底」とする)と小型底びき網(以下、「小底」とする))によるものであり、漁場は対馬南西海域から隠岐諸島周辺に及ぶ。底びき網以外では、刺し網、釣りおよびはえ縄等でも漁獲される。底びき網では浜田漁港と下関港を根拠地とする 2 そうびき沖底(浜田以西)の漁獲が多く、漁業種類別統計が整備された 1986 年以降では、総漁獲量の 47~78%を占める(図 3-1、表 3-1)。

(2) 漁獲量の推移

2そうびき沖底(浜田以西)の漁獲量は、1970年代末の約5,000トンをピークとし、1980年代の前半に約2,500トン、後半には約1,000トンにまで減少した。2009年以降、さらに減少しており、2021年の漁獲量は179トンであった(図3-1、表3-1)。小底の漁獲量は、1986年以降2004年(197トン)を除き300~600トンで推移していたが、2011年からは減少傾向にあり、2021年は86トンであった。2021年の系群全体の漁獲量は、前年を129トン下回る306トンであった。

1993 年から現在に至るまでの年別年齢別漁獲尾数の推移を図 3-2 に、年別年齢別漁獲量の推移を図 3-3 にそれぞれ示した。1993~2021年の漁獲尾数の変動には、3回のピークがみられる(図 3-2、補足表 2-1)。近年では、2009年以降、減少傾向にあり、2021年は過去最少となる 290万尾であった。例年、1、2歳魚が漁獲物の主体となっているが、全漁獲尾数に占めるそれら合計の割合は低下しており、2021年では49%であった。若齢魚の漁獲尾数の低迷が続いており、漁獲量に占める3歳魚と4歳魚の割合は漸増傾向にある(図 3-3、補足表 2-1)。

(3) 漁獲努力量

2 そうびき沖底(浜田以西)の有効漁獲努力量(補足資料 8)は、1970年代後半の約80,000網をピークに減少傾向が続き、2010年には21,102網となった(図 3-4、表 3-2)。その後は約20,000網で安定していたが、2013年以降再び減少し続けており、2021年は11,191網であった。

4. 資源の状態

(1) 資源評価の方法

日本海南西海域で操業する 1 そうびきおよび 2 そうびき沖底と、山口県、島根県、鳥取県の小底について、1966 年以降の漁獲情報を収集した。統計資料が整備されている 2 そうびき沖底(浜田以西)について、日別・漁船別の漁業データが詳細に整理されている 1993年以降について標準化 CPUE の計算(補足資料 9)を行い、資源量指標値とした。

1993 年以降の年齢別漁獲尾数を求め、2 そうびき沖底の標準化 CPUE をチューニングに 用いたコホート解析(補足資料2)により資源量を推定した(補足資料1)。

(2) 資源量指標値の推移

2 そうびき沖底の標準化 CPUE (kg/網) は、1998 年の 18.0 から 2003 年の 41.7 にかけて増加した (図 4-1、表 3-2)。その後、2005 年の 35.6 にやや減少したが、以降は再び増加し 2008 年には過去最高の 51.5 となった。2009 年以降、2014 年の 25.4 に減少し、2015 年の 28.0 に一旦増加した後、3 年連続でやや減少した。2020 年の 27.9 にかけてやや増加したが、2021 年は 20.8 と前年を下回った。近年の推移は、山口県水産研究センターによる桁網調査 結果より得られた CPUE 最小二乗平均 (全長 10 cm 以上) のそれと概ね類似している (補足資料 7)。

長期的な資源量指標値の推移として、1966 年以降の 2 そうびき沖底の資源量指数と資源 密度指数 (kg/網) の推移を図 4-2 と図 4-3 にそれぞれ示す。資源量指数は、1960 年代後半 ~1970 年代には 50,000 を超えた年もみられたが、1980 年代に減少し、1990 年以降は 9,000 ~25,000 で推移した (図 4-2、表 3-2)。2011~2015 年は 16,000 前後で推移していたが、2016 年以降さらに減少し、2021 年は 7,707 であった。資源密度指数は、資源量指数と概ね同様の変動を示すが、1990 年代以降、資源量指数に比べて増減の幅が大きい (図 4-3、表 3-2)。

(3) 資源量と漁獲圧の推移

コホート解析により推定された年齢別資源量を図 4-4、表 4-1 および補足表 2-1 に示す。 資源量は、2001 年に 5,463 トンのピークがあり、2004 年にかけて減少した後、2008 年まで 約 4,500 トンで横ばいであった。その後、2009 年から 2016 年にかけて大きく減少した。 2017 年以降は緩やかに増加しており、2021 年は 1,968 トンと推定された。

1 歳魚の資源尾数を加入量とし、その経年変化を親魚量とともに図 4-5 および表 4-1 に示す。加入量は 2009 年までは 30 百万~56 百万尾の間で変動していたが、2007 年(2006 年生まれ)の 48 百万尾のピークの後は減少が続き、2021 年(2020 年生まれ)は 10 百万尾と推定された。親魚量は、2006 年までは 3,000 トン前後で比較的安定していたが、2009 年以降は減少傾向を示し、2016 年には 1,202 トンとなった。その後は緩やかに増加しており、2021 年の親魚量は 1,485 トンと推定された。

コホート解析に使用した自然死亡係数 (M) の値が資源計算に与える影響をみるために、M を変化させた場合の 2021 年の資源量、親魚量、加入量を図 4-6 に示す。M を基準値である 0.35 から 0.1 増減させたときに生じる資源量、親魚量、加入尾数の増減は 30%以下であったが、加入量に与える M の不確実性の影響が他の推定値よりもやや大きい傾向がある。

年齢別漁獲係数 F の推移を図 4-7 および補足表 2-1 に示す。1 歳魚と 2 歳魚の F は 2009 年 以降、3 歳魚と 4+歳の F は 2010 年以降より低下傾向を示している。各年齢の F の単純平均 は、長期的には概ね $0.3\sim0.6$ で変動しているが、近年では 2009 年の 0.59 をピークとして、 2014 年の 0.49 にかけて緩やかに低下した。 2015 年に 0.51 とやや上昇したが、その後は再 び低下傾向にあり、2021 年の F は 0.18 であった。現状の F (Fourient) は $2019\sim2021$ 年の F の平均値 (0.28) とした。

漁獲割合は 2009 年の 39%から 2014 年の 34%に緩やかに低下した後、2015 年の 35%に一旦上昇した。その後、2017 年の 27%にかけて低下した。近年では 2018 年の 29%から 2021 年の 16%に大きく低下している(図 4-8、表 4-1)。

昨年度の評価と比べると、加入量の推定値に大きな違いはないものの、資源量と親魚量

はやや下方修正された(補足資料 2)。これは、データの追加に伴い、2019 年以前の加入量が下方修正されたためである。

(4) 加入量当たり漁獲量 (YPR)、加入量当たり親魚量 (SPR) および現状の漁獲圧

選択率の影響を考慮して漁獲圧を比較するため、加入量あたり親魚量 (SPR) を基準に、その漁獲圧が無かった場合との比較を行った。図 4-9 に年ごとに漁獲が無かったと仮定した場合の SPR に対する、漁獲があった場合の SPR の割合 (%SPR) の推移を示す。%SPR は漁獲圧が低いほど大きな値となる。%SPR は増加傾向にあり、2021 年は 51%となった。

現状の漁獲圧に対する YPR と%SPR の関係を図 4-10 に示す。ここで、F の選択率としては令和 3 年 10 月に開催された「管理基準値等に関する研究機関会議」において最大持続生産量 MSY を実現する F (Fmsy) の推定に用いた値 (八木ほか 2021b) を用いた。また、年齢別平均体重および成熟割合についても Fmsy 算出時の値を使用した。Fmsy は%SPR に換算すると 31%に相当する。現状の漁獲圧 (F2019-2021) は F0.1 よりもやや高いが、Fmsy、F30%SPR を下回る。

(5) 再生產関係

親魚量(重量)と加入量(尾数)の関係(再生産関係)を図 4-11 に示す。上述の「管理 基準値等に関する研究機関会議」において、本系群の再生産関係式にはホッケー・スティ ック型再生産関係が適用されている(八木ほか 2021b)。ここで、再生産関係式のパラメー タ推定に使用するデータは令和2 (2020)年度の資源評価(八木ほか 2021a)に基づく1993 ~2018年の親魚量と翌年(1994~2019年)の1歳魚時点の加入量とした。最適化方法には 最小二乗法を用い、加入量の残差の自己相関を考慮した。再生産関係式の各パラメータを 補足表 6-1 に示す。

(6) 現在の環境下において MSY を実現する水準

現在の環境下において最大持続生産量 MSY を実現する親魚量 (SBmsy) および MSY を 実現する漁獲量として上記の「管理基準値等に関する研究機関会議」で推定された値 (八 木ほか 2021b) を補足表 6-2 に示す。

(7) 資源の水準・動向および漁獲圧の水準

MSYを実現する親魚量と漁獲圧を基準にした神戸プロットを図4-12に示す。また、2021年の親魚量と漁獲圧の概要を補足表 6-3に示した。本系群における2021年の親魚量はMSYを実現する親魚量(SBmsy)を下回っており、2021年の親魚量はSBmsyの0.37倍である。また、2021年の漁獲圧は、MSYを実現する漁獲圧(Fmsy)を下回っており、2021年の漁獲圧は MSYを実現する漁獲圧(Fmsy)を下回っており、2021年の漁獲圧は MSYを実現する漁獲圧の0.48倍である。なお、神戸プロットに示した漁獲圧の比(F/Fmsy)とは、各年のFの選択率の下でFmsyの漁獲圧を与えるFを%SPR換算して求めた値と、各年のF値との比である。親魚量の動向は、直近5年間(2017~2021年)の推移から増加と判断される。

5. 資源評価のまとめ

親魚量は2017年以降緩やかな増加傾向にあるが、2021年の親魚量はMSYを実現する親魚量(SBmsy)を下回った。当系群に対する漁獲圧は近年低下傾向を示しており、2020年以降についてはMSYを実現する漁獲圧(Fmsy)を下回っている。資源量は増加傾向にあると判断される。

6. その他

年齢別漁獲尾数は1~2歳魚の割合が高く(図3-2)、単価の安い小型魚が多く漁獲されている。また、商品サイズ以下の小型魚が投棄されている可能性があり(石川県水産総合センターほか1994)、今後、小型魚の保護を目的とした資源管理方策について検討する必要がある。

7. 引用文献

- 今井千文・宮崎義信 (2005) 耳石解析によるムシガレイ日本海西部群の成長モデルの再検討. 水大研報、**53**、21-34.
- 今岡要二郎 (1971) 日本海西南海域およびその周辺海域産ムシガレイの漁業生物学的研究ー II. 成熟と産卵について. 西水研報, 39, 51-63.
- 今岡要二郎 (1972) 日本海西南海域およびその周辺海域産ムシガレイの漁業生物学的研究ーIII. 食性について. 西水研報, 42, 77-89.
- 今岡要二郎 (1977) 日本海西南海域およびその周辺海域産ムシガレイの漁業生物学的研究 (昭和47年度) ムシガレイ幼魚の生息域について. 島根水試事報, 昭和47-48年度, 297-299.
- 今岡要二郎・三栖 寛 (1969) 日本海西南海域およびその周辺海域産ムシガレイの漁業生物学的研究第1報. 年令と生長について. 西水研報, 37, 51-70.
- 石川県水産総合センター・福井水産試験場・兵庫県但馬水産事務所・鳥取県水産試験場・ 島根県水産試験場 (1994) 平成 3~5 年度水産関係地域重要新技術開発促進事業総合報告 書(重要カレイ類の生態と資源管理に関する研究),118 pp.
- 三栖 寛・今岡要二郎・末島富治・花渕信夫・小嶋喜久雄・花渕靖子 (1973) 日本海西南海 域およびその周辺海域産ムシガレイの漁業生物学的研究-IV. 標識放流結果からみた 分布と回遊について. 西水研報, 43, 23-36.
- 八木佑太・藤原邦浩・飯田真也・佐久間啓・吉川 茜・白川北斗 (2021a) 令和 2 (2020) 年度ムシガレイ日本海南西部系群の資源評価. 水産研究・教育機構. 1-27. FRA-SA2020-RC05-6.

https://abchan.fra.go.jp/digests2020/details/202065.pdf (accessed 13 August 2022)

八木佑太・藤原邦浩・飯田真也・佐久間啓・吉川 茜・白川北斗 (2021b) 令和 3 (2021) 年度ムシガレイ日本海南西部系群の管理基準値等に関する研究機関会議資料. 水産研究・教育機構. 1-22. FRA-SA2021-BRP12-2.

http://www.fra.affrc.go.jp/shigen hyoka/SCmeeting/2019-

1/20211026/doc mushigarei japansea-sw RIM.pdf (last accessed 13 August 2022)

(執筆者:八木佑太、藤原邦浩、飯田真也、佐久間啓、吉川 茜、白川北斗)

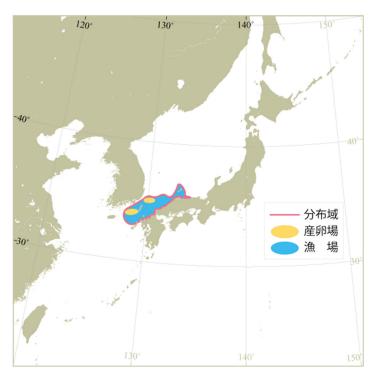


図 2-1. ムシガレイ日本海南西部系群の分布

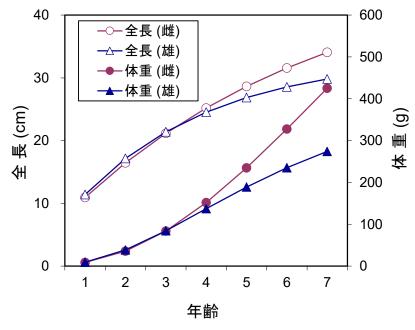


図 2-2. 年齢と成長

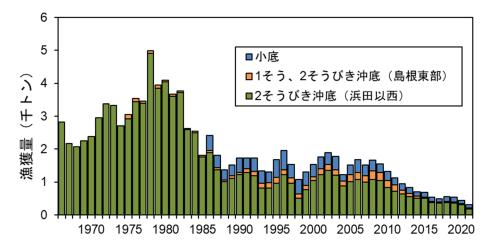


図 3-1. 漁業種類別漁獲量の推移 (1985年以前の小底のデータは無い)

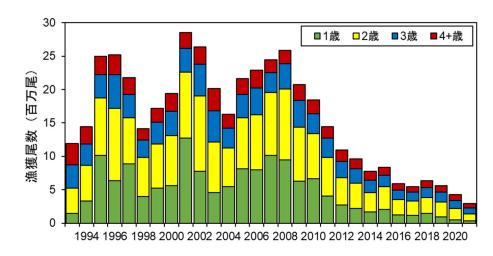


図 3-2. 年齢別漁獲尾数の推移

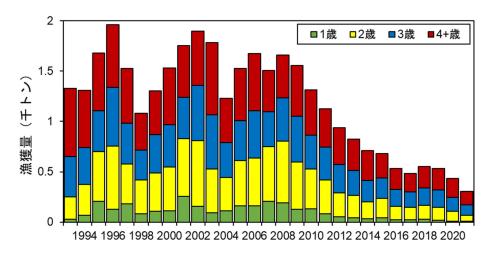


図 3-3. 年齢別漁獲量の推移

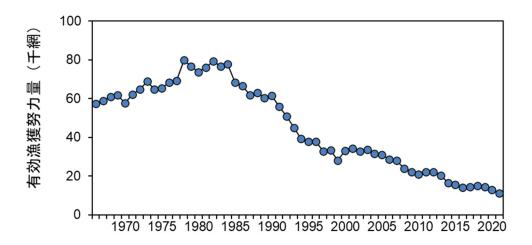


図 3-4. 有効漁獲努力量(2 そうびき沖底、浜田以西)の推移

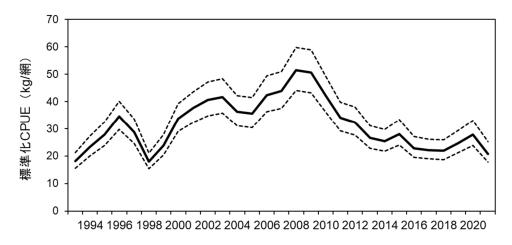


図 4-1. 標準化 CPUE (2 そうびき沖底、浜田以西) の推移 破線は 95%信頼区間。

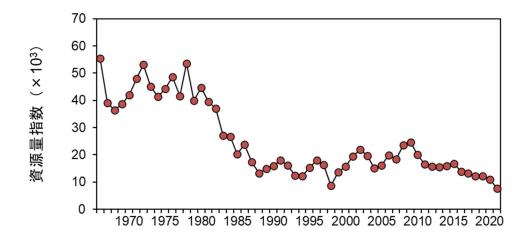


図 4-2. 資源量指数 (2 そうびき沖底、浜田以西) の推移

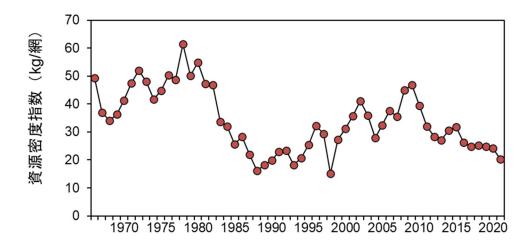


図 4-3. 資源密度指数 (2 そうびき沖底、浜田以西) の推移

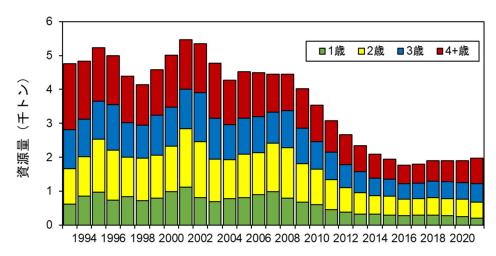


図 4-4. 年齢別資源量の推移

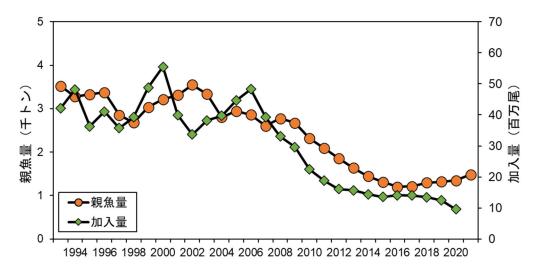


図 4-5. 親魚量および加入尾数 (1歳魚) の推移 横軸は産卵年を示す。

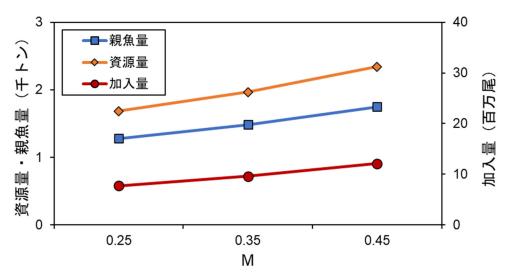


図 4-6. 自然死亡係数 (M) と 2021 年資源量、親魚量、加入量の関係

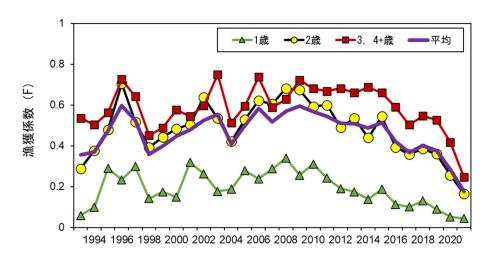


図 4-7. 年齢別漁獲係数 F の推移

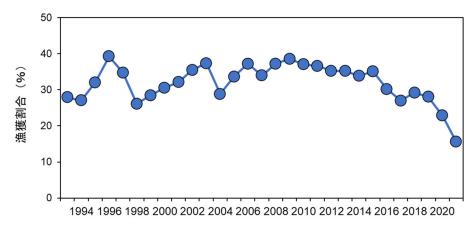


図 4-8. 漁獲割合の推移

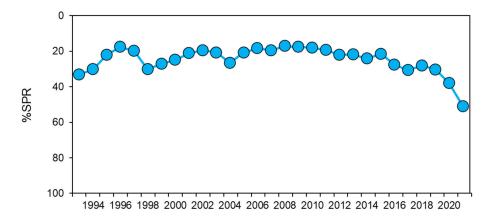


図 4-9. %SPR の推移 %SPR は漁獲がないときの親魚量に対する漁獲があるときの 親魚量の割合を示し、Fが高い(低い)と%SPR は小さく(大きく)なる。

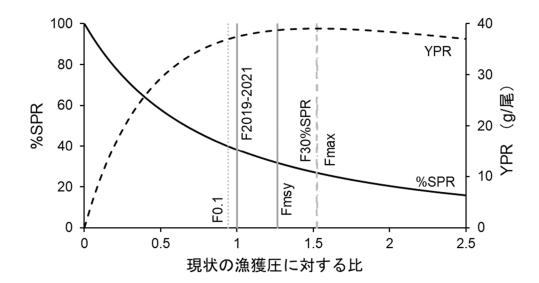
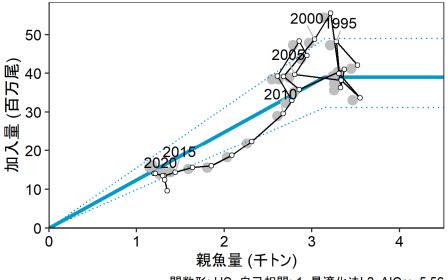



図 4-10. 現状の漁獲圧 (F2019-2021) に対する YPR、%SPR の関係

関数形: HS, 自己相関: 1, 最適化法L2, AICc: -5.56

図 4-11. 親魚量と加入量の関係 青実線は本系群で適用した再生産関係式であり、上下の 点線は、仮定されている再生産関係において観察データの 90%が含まれると推定され る範囲である。再生産関係式のパラメータは令和3年10月に開催された「管理基準値 等に関する研究機関会議」(八木ほか 2021b) に示された値に基づく。灰色丸印は再生 産関係式推定時の、白色丸は2022年度資源評価において推定された親魚量と翌年の加 入量である。図中の数字は加入群の年級(生まれ年)を示す。

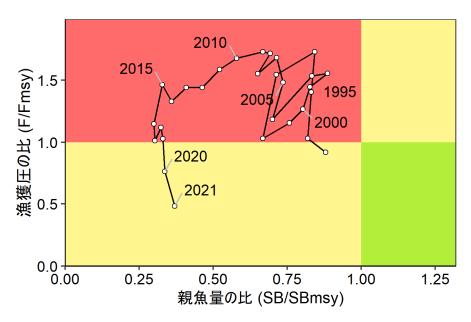


図 4-12. 神戸プロット

表 3-1. ムシガレイ日本海南西部系群における漁業種類別漁獲量(トン)

	2そうび	き沖底	1そうびき沖底	小片	⇒ 1.
年	浜田以西	島根東部	日本海西部	小底	計
1966	2,829				2,829
1967	2,169				2,169
1968	2,069				2,069
1969	2,247				2,247
1970	2,384				2,384
1971	2,954				2,954
1972	3,371				3,371
1973	3,322				3,322
1974	2,711				2,711
1975	2,920	137			3,057
1976	3,436	109			3,545
1977	3,384	75			3,460
1978	4,906	86			4,991
1979	3,848	100			3,948
1980	4,048	46			4,094
1981	3,604	64			3,668
1982	3,721	38	2		3,761
1983	2,588	27	11		2,625
1984	2,490	50	6		2,546
1985	1,764	49	4		1,817
1986	1,887	72	2	456	2,417
1987	1,364	61	4	379	1,808
1988	1,017	40	1	314	1,373
1989	1,107	89	1	317	1,514
1990	1,221	68	5	428	1,722
1991	1,292	101	3 2	331	1,726
1992	1,187	139	2	393	1,722
1993	821	141	6	362	1,330
1994	814	157	5	333	1,308
1995	970	175	2	531	1,678
1996	1,225	140	2	593	1,960
1997	960	126	31	408	1,526
1998	507	115	17	444	1,083
1999	763	110	22	411	1,305
2000	1,037	107	10	377	1,531
2001	1,228	161	18	347	1,754
2002	1,346	179	12	362	1,899
2003	1,210	151	16	406	1,783
2004	887	110	37	197	1,231
2005	1,007	199	15	303	1,524
2006	1,076	191	22	385	1,674
2007	990	164	29	326	1,509
2008	1,074	243	24	318	1,659
2009	1,037	236	11	270	1,554
2010	833	172	32	276	1,313
2011	710	174	22	220	1,126
2012	630	96	28	187	940
2013	551 502	68	37	169	826
2014	502	23	40	143	708
2015	502	8	34	137	681
2016	369	3	34	128	534
2017	356	2	30	97	485
2018	377	2	32	142	553
2019	357	1	38	137	532
2020	313	1	27	93	435
2021*	179	0	41	86	306
	1//	0	71	00	500

^{*}暫定値。

表 3-2. 2 そうびき沖底によるムシガレイの漁獲動向

年	漁獲量(トン)	有効漁獲努力量*1	有漁漁区数*1	資源量指数*1	資源密度指数*1	標準化CPUE*
1966	2,829	57,426	1,125	55,430	49.3	
1967	2,169	58,805	1,059	39,069	36.9	
1968	2,069	60,832	1,070	36,385	34.0	
1969	2,247	61,894	1,066	38,703	36.3	
1970	2,384	57,777	1,018	42,010	41.3	
1971	2,954	62,139	1,008	47,926	47.5	
1972	3,371	64,747	1,020	53,104	52.1	
1973	3,322	69,069	939	45,160	48.1	
1974	2,711	64,965	993	41,436	41.7	
1975	2,920	65,281	992	44,372	44.7	
1976	3,436	68,379	968	48,643	50.3	
1977	3,384	69,365	852	41,571	48.8	
1978	4,906	79,841	872	53,580	61.4	
1979	3,848	76,802	798	39,979	50.1	
1980	4,048	73,844	814	44,621	54.8	
1981	3,604	76,131	837	39,622	47.3	
1982	3,721	79,403	791	37,071	46.9	
1983	2,588	76,750	802	27,040	33.7	
1984	2,490	77,753	835	26,745	32.0	
1985	1,764	68,513	786	20,236	25.7	
1986	1,887	66,718	844	23,867	28.3	
1987	1,364	61,896	787	17,348	22.0	
1988	1,017	62,958	827	13,360	16.2	
1989	1,107	60,453	819	14,997	18.3	
1990	1,221	61,599	806	15,973	19.8	
1991	1,292	56,045	784	18,069	23.0	
1992	1,187	50,931	696	16,227	23.3	
1992	821					10 1
1993 1994		44,873	682	12,480	18.3	18.1
	814	39,444	589	12,151	20.6	23.3
1995	970	37,970	600	15,322	25.5	27.8
1996	1,225	37,928	558	18,019	32.3	34.5
1997	960	32,672	558	16,402	29.4	28.7
1998	507	33,267	577	8,793	15.2	18.0
1999	763	27,996	504	13,728	27.2	23.9
2000	1,037	33,189	506	15,806	31.2	33.8
2001	1,228	34,420	547	19,510	35.7	37.7
2002	1,346	32,815	536	21,985	41.0	40.6
2003	1,210	33,635	546	19,640	36.0	41.7
2004	887	31,692	543	15,194	28.0	36.3
2005	1,007	31,130	498	16,114	32.4	35.6
2006	1,076	28,621	530	19,926	37.6	42.4
2007	990	27,949	522	18,494	35.4	43.9
2008	1,074	23,852	524	23,593	45.0	51.5
2009	1,037	22,102	525	24,633	46.9	50.6
2010	833	21,102	511	20,182	39.5	42.2
2011	710	22,173	515	16,488	32.0	34.1
2012	630	22,204	559	15,849	28.4	32.3
2013	551	20,393	573	15,490	27.0	26.7
2014	502	16,373	519	15,921	30.7	25.4
2015	502	15,747	530	16,892	31.9	28.0
2016	369	14,021	528	13,904	26.3	22.8
2017	356	14,316	530	13,186	24.9	22.1
2018	377	14,968	490	12,325	25.2	21.9
2019	357	14,400	492	12,202	24.8	24.7
2020	313	12,878	492	10,988	24.3	27.9
2021*3	179	11,191	379	7,707	20.3	20.8

沖合底びき網統計による。

^{*1}各項目については、補足資料3を参照。

^{*2}補足資料4を参照。


^{*3} 暫定値。

表 4-1. ムシガレイ日本海南西部系群の資源解析結果

年	漁獲量 (トン)	資源量 (トン)	親魚量(トン)	加入尾数 (千尾)	漁獲割合 (%)	F/Fmsy	%SPR
1993	1,330	4,764	3,521	42,080	28	0.92	33
1994	1,308	4,827	3,280	48,237	27	1.03	30
1995	1,678	5,236	3,328	36,313	32	1.40	22
1996	1,960	4,992	3,374	41,028	39	1.73	18
1997	1,526	4,389	2,856	35,791	35	1.54	20
1998	1,083	4,144	2,676	39,238	26	1.03	30
1999	1,305	4,586	3,033	48,811	28	1.16	27
2000	1,531	5,009	3,216	55,503	31	1.27	25
2001	1,754	5,463	3,312	39,993	32	1.44	21
2002	1,899	5,346	3,551	33,714	36	1.55	19
2003	1,783	4,768	3,335	38,216	37	1.53	21
2004	1,231	4,268	2,804	39,734	29	1.18	26
2005	1,524	4,525	2,946	44,611	34	1.48	21
2006	1,674	4,496	2,858	48,313	37	1.68	18
2007	1,509	4,443	2,607	39,329	34	1.55	19
2008	1,659	4,456	2,774	33,053	37	1.71	17
2009	1,554	4,028	2,674	29,632	39	1.73	18
2010	1,313	3,542	2,317	22,399	37	1.67	18
2011	1,126	3,072	2,088	18,790	37	1.58	19
2012	940	2,667	1,856	16,078	35	1.44	22
2013	826	2,344	1,639	15,678	35	1.44	22
2014	708	2,088	1,441	14,405	34	1.33	24
2015	681	1,940	1,315	13,523	35	1.46	21
2016	534	1,767	1,202	14,081	30	1.15	28
2017	485	1,794	1,214	14,059	27	1.01	31
2018	553	1,893	1,298	13,490	29	1.12	28
2019	532	1,896	1,321	12,429	28	1.03	30
2020	435	1,902	1,349	9,602	23	0.76	38
2021	306	1,968	1,485	_	16	0.48	51

加入尾数:対象年に発生し、1歳時における尾数。

補足資料 1 資源評価の流れ

※ 点線枠内は資源管理方針に関する検討会における管理基準値や漁獲管理規則等の 議論をふまえて作成される。

(http://www.fra.affrc.go.jp/shigen hyoka/SCmeeting/2019-1/index.html)

補足資料 2 計算方法

(1) 年齢別漁獲尾数

1993~2021年に島根県浜田漁港において、2そうびき沖底により水揚げされたムシガレイの年齢別漁獲尾数をベースに、評価対象資源全体の年齢別漁獲尾数を求めた。

1. 浜田漁港の全長組成

島根県浜田漁港における 2 そうびき沖底の水揚げ物には、サイズ依存性のある入り数銘柄、散銘柄および他の銘柄がある。入り数銘柄について、2002 年 3 月~2021 年 12 月の市場調査データを基に、雌雄込みの銘柄別全長組成(箱内尾数)変換表を作成した。散銘柄については、2002 年 3 月~2016 年 5 月、2016 年 9 月~2021 年 12 月の市場調査データに基づきそれぞれ雌雄込みの銘柄別全長組成(箱内尾数)変換表を作成した。1993~2021 年の各月において、島根県浜田漁港に 2 そうびき沖底により水揚げされたムシガレイの全長組成(漁獲尾数)を算出した。

2. 年齢分解

1989~2003 年に日本海南西海域における試験操業による採集物ならびに市場購入した水揚げ物のムシガレイ 1,708 個体の耳石標本(山口県水産研究センター、島根県水産試験場および西海区水産研究所保有)の年齢査定結果に基づく、3~5 月、6~8 月、9~11 月、および 12 月~翌年 2 月における年齢体長相関表(上田 2006)を用い、浜田漁港における 2 そうびき沖底により入り数・散銘柄として水揚げされたムシガレイの各月の年齢別漁獲尾数を算出した。なお、用いた年齢体長相関表では、年齢起算日を 3 月 1 日としているため、1 月と 2 月の各年齢群は+1 歳群として扱った。

3. 全体への引き延ばし

入り数・散銘柄として水揚げされたムシガレイの各月の年齢別漁獲尾数を、浜田 2 そうびき沖底全体の年齢別漁獲尾数に各月で引き延ばした。さらに、各月の年齢別漁獲尾数を3~5月、6~8月、9~11月、12月および1~2月の期間で合算し、各期間における本系群の総漁獲量を用いて、本系群全体の年齢別漁獲尾数に引き延ばした。これらの総和を、各年(暦年)における評価対象の年齢別漁獲尾数とし、コホート解析に用いた。

(2) 資源計算方法 (コホート解析)

0歳魚は漁獲されないため、1歳魚以上の漁獲対象資源について、最高齢群は4歳以上とした(以下、4+と表す)。用いた各年齢の体重と成熟率は下表に示す。1993~2020年の4+の体重は、各年の4歳と5歳以上の割合で重み付けした平均値を用いた。自然死亡係数 Mは、田内・田中の式(田中1960)により、寿命を7歳として求めた(M=2.5÷7歳≒0.35)。

年齢	1	2	3	4	5+
体重(g)	20	58	115	188	331
成熟率(%)	0	40	100	100	100

年齢別資源尾数の推定にはPopeの式を用い、最高年齢4+と3歳の各年の漁獲係数Fは等しいとした。

$$N_{a,y} = N_{a+1,y+1} \exp(M) + C_{a,y} \exp(\frac{M}{2})$$
 (1~2 歳の資源尾数) (1)

ここで、N は資源尾数、C は漁獲尾数、a は年齢、y は年。3 歳魚は(2)式、4+は(3)式により計算した。

$$N_{3,y} = \frac{C_{3,y}}{C_{4+,y+1}C_{3,y}} N_{4+,y+1} \exp(M) + C_{3,y} \exp(\frac{M}{2})$$
 (3歳の資源尾数) (2)

$$N_{4+y} = \frac{C_{4+,y}}{C_{3,y}} N_{3,y} = \frac{C_{4+,y}}{C_{4+,y} + C_{3,y}} N_{4+,y+1} \exp(M) + C_{4+,y} \exp(\frac{M}{2}) \quad (4+0)$$
資源尾数) (3)

ただし、最近年については全年齢の資源尾数を(4)式により計算した。

$$N_{a,y} = \frac{C_{a,y} \exp(\frac{M}{2})}{1 - \exp(-F_{a,y})}$$
(4)

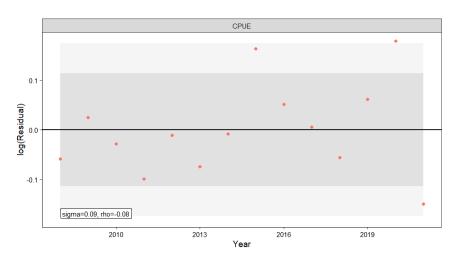
2008 年から直近年までの標準化 CPUE を用いて、式(5)が最小となるように最近年の3歳と4+歳のF値を求めた。1歳と2歳のF値は、2021年の年齢別選択率を過去3年平均(2018~2020年)として計算した。

$$\sum_{y=2008}^{2021} \left\{ \ln(q \cdot B_y) - \ln(CPUE_y) \right\}^2 \tag{5}$$

$$q = \left(\frac{\prod_{y=2008}^{2021} \text{CPUE}_y}{\prod_{y=2008}^{2021} B_y}\right)^{\frac{1}{14}}$$
(6)

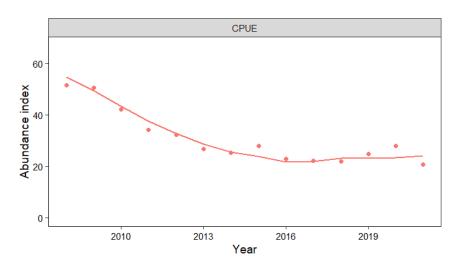
ここで、qはチューニングパラメータ、Bは資源量、CPUEは標準化CPUE。

(3) モデル診断結果

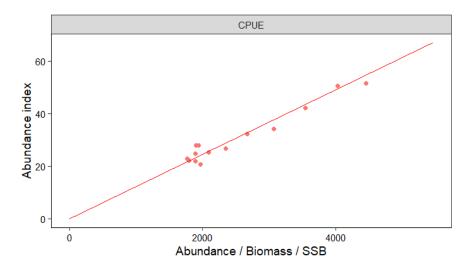

「令和 4 (2022) 年度 資源評価のモデル診断手順と情報提供指針 (FRA-SA2022-ABCWG02-03)」に従い、本系群の評価に用いた VPA の統計学的妥当性や仮定に対する頑健性について診断した。指標値と予測値との関係は2014年までは2009年を除き負の残差、2015年と2016年では正の残差となったが、その後一定の偏りは認められない(補足図2-1、補足図2-2)。また、指標値と予測値との関係は線形を仮定して問題ないと考えられた(補足図2-3)。レトロスペクティブ解析では、データの追加・更新が行われることで、加入量(1 歳魚資源尾数)には大きな変化は生じていないが、資源量と親魚量ではやや過大に推定する傾向が認められ(補足図2-4)、年齢別漁獲尾数の算出方法やCPUE標準化手法をさらに検討し改善を図る必要がある。

引用文献

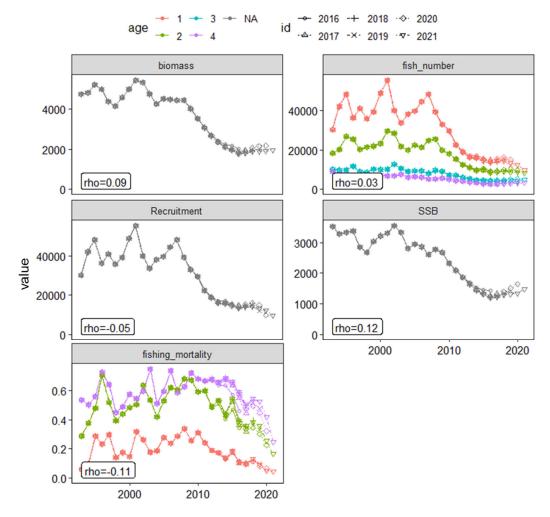
田中昌一 (1960) 水産生物の Population Dynamics と漁業資源管理. 東海水研報, 28, 1-200.


上田幸男 (2006) 平成 17 年ムシガレイ日本海系群の資源評価. 平成 17 年度我が国周辺水域の 漁業資源評価 第 3 分冊, 水産庁・水産総合研究センター, 1232-1249.

平松一彦(2001)VPA (Virtual Population Analysis). 平成 12 年度資源評価体制確立推進事業報告書—資源解析手法教科書—, 日本水産資源保護協会, 104-128.



補足図 2-1. 残差プロット


Sigma は観測誤差、rho は残差の自己相関係数、薄い灰色は 1.96σ 区間(95%区間)、濃い灰色は 1.28σ 区間(80%区間)を示す。

補足図 2-2. 予測値(折線)と指標値(点)の経年変化

補足図 2-3. 予測値と指標値の関係

補足図 2-4. 資源量 (biomass)、資源尾数 (fish number)、漁獲係数 (fishing_mortality)、 1歳資源尾数 (Recruitment)、親魚量 (SSB) のレトロスペクティブ解析結果

補足表 2-1. 資源解析結果 (1993~2002年)

一种加加加克及	奴(/七/												
年	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002			
1歳	1,446	3,341	10,169	6,339	8,882	3,974	5,272	5,632	12,723	7,773			
2歳	3,825	5,300	8,583	10,811	6,881	5,853	6,555	7,474	9,864	11,250			
3歳	3,476	3,188	3,501	5,074	3,523	2,590	3,309	3,646	3,561	4,762			
4歳以上	3,137	2,596	2,682	2,983	2,522	1,718	2,060	2,633	2,388	2,597			
計	11,884	14,424	24,935	25,208	21,808	14,135	17,195	19,384	28,536	26,382			
年齢別漁獲量	(トン)												
年	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002			
1歳	29	67	205	128	179	80	106	114	257	157			
2歳	221	307	497	626	398	339	380	433	571	651			
3歳	400	367	403	585	406	298	381	420	410	549			
4歳以上	679	566	573	622	543	365	438	564	516	542			
計	1,330	1,308	1,678	1,960	1,526	1,083	1,305	1,531	1,754	1,899			
年齢別漁獲係数													
年	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002			
1歳	0.06	0.10	0.29	0.23	0.30	0.14	0.17	0.15	0.32	0.26			
2歳	0.29	0.38	0.48	0.71	0.52	0.39	0.44	0.48	0.50	0.64			
3歳	0.54	0.50	0.56	0.73	0.64	0.45	0.49	0.58	0.55	0.60			
4歳以上	0.54	0.50	0.56	0.73	0.64	0.45	0.49	0.58	0.55	0.60			
単純平均	0.35	0.37	0.47	0.60	0.52	0.36	0.40	0.45	0.48	0.52			
年齢別資源尾	数(千尾)												
年	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002			
1歳	30,224	42,080	48,237	36,313	41,028	35,791	39,238	48,811	55,503	39,993			
2歳	18,196	20,085	26,848	25,456	20,267	21,456	21,885	23,225	29,668	28,431			
3歳	9,980	9,612	9,705	11,715	8,863	8,506	10,206	9,919	10,093	12,627			
4歳以上	9,005	7,827	7,434	6,887	6,344	5,642	6,353	7,163	6,767	6,887			
計	67,405	79,603	92,224	80,370	76,503	71,394	77,683	89,119	102,031	87,938			
年齢別資源量	(トン)												
年	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002			
1歳	611	850	974	734	829	723	793	986	1,121	808			
2歳	1,054	1,163	1,555	1,474	1,173	1,242	1,267	1,345	1,718	1,646			
3歳	1,150	1,107	1,118	1,350	1,021	980	1,176	1,143	1,163	1,455			
4歳以上	1,950	1,707	1,589	1,435	1,366	1,199	1,350	1,536	1,462	1,438			
計	4,764	4,827	5,236	4,992	4,389	4,144	4,586	5,009	5,463	5,346			
年齢別親魚量	(トン)												
年	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002			
1歳	0	0	0	0	0	0	0	0	0	0			
2歳	421	465	622	590	469	497	507	538	687	658			
3歳	1,150	1,107	1,118	1,350	1,021	980	1,176	1,143	1,163	1,455			
4歳以上	1,950	1,707	1,589	1,435	1,366	1,199	1,350	1,536	1,462	1,438			
計	3,521	3,280	3,328	3,374	2,856	2,676	3,033	3,216	3,312	3,551			

888

1,856

925

2,088

補足表 2-1.	(続き)	資源解	析結果	(2003~2012年)								
年齢別漁獲尾	数(千尾)											
年	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		
1歳	4,596	5,477	8,095	7,945	10,108	9,494	6,268	6,654	4,029	2,732		
2歳	7,528	5,739	7,708	8,235	9,438	10,597	8,126	6,771	5,793	4,039		
3歳	4,689	3,008	3,466	4,058	2,996	3,731	3,937	2,939	2,872	2,454		
4歳以上	3,353	2,036	2,383	2,644	1,925	2,021	2,387	2,076	1,766	1,700		
計	20,165	16,259	21,652	22,882	24,466	25,842	20,717	18,441	14,459	10,926		
年齢別漁獲量	(トン)											
年	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		
1歳	93	111	164	160	204	192	127	134	81	55		
2歳	436	332	446	477	546	614	470	392	335	234		
3歳	540	347	399	467	345	430	454	339	331	283		
4歳以上	714	442	515	569	413	424	504	449	378	368		
計	1,783	1,231	1,524	1,674	1,509	1,659	1,554	1,313	1,126	940		
年齢別漁獲係数												
年	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		
1歳	0.18	0.19	0.28	0.24	0.29	0.34	0.26	0.31	0.24	0.19		
2歳	0.53	0.42	0.53	0.62	0.60	0.68	0.67	0.59	0.60	0.49		
3歳	0.75	0.51	0.60	0.74	0.59	0.63	0.72	0.68	0.67	0.68		
4歳以上	0.75	0.51	0.60	0.74	0.59	0.63	0.72	0.68	0.67	0.68		
単純平均	0.55	0.41	0.50	0.58	0.52	0.57	0.59	0.57	0.54	0.51		
年齢別資源尾熱	数(千尾)											
年	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		
1歳	33,714	38,216	39,734	44,611	48,313	39,329	33,053	29,632	22,399	18,790		
2歳	21,657	19,900	22,333	21,205	24,767	25,561	19,746	18,030	15,296	12,403		
3歳	10,591	8,942	9,206	9,267	8,030	9,531	9,117	7,093	7,022	5,916		
4歳以上	7,574	6,050	6,331	6,038	5,159	5,164	5,527	5,011	4,319	4,098		
計	73,536	73,108	77,603	81,121	86,270	79,585	67,442	59,766	49,036	41,207		
年齢別資源量	(トン)											
年	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		
1歳	681	772	803	901	976	794	668	599	452	380		
2歳	1,254	1,152	1,293	1,228	1,434	1,480	1,143	1,044	886	718		
3歳	1,220	1,030	1,060	1,068	925	1,098	1,050	817	809	682		
4歳以上	1,613	1,313	1,369	1,300	1,108	1,084	1,167	1,082	925	888		
計	4,768	4,268	4,525	4,496	4,443	4,456	4,028	3,542	3,072	2,667		
年齢別親魚量	ー (トン)									_		
年	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012		
1歳	0	0	0	0	0	0	0	0	0	0		
2歳	502	461	517	491	574	592	457	418	354	287		
3歳	1,220	1,030	1,060	1,068	925	1,098	1,050	817	809	682		
4구분 171 1	1 (12	1 2 1 2	1.260	1 200	4.400	1 00 1		1.000		000		

4歳以上

計

1,613

3,335

1,313

2,804

1,369

2,946

1,300

2,858

1,108

2,607

1,084

2,774

1,167

2,674

1,082

2,317

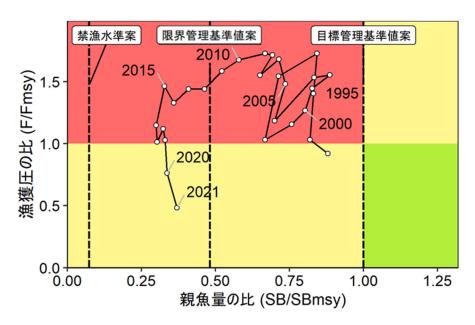
補足表 2-1. (続き)資源解析結果(2013~2021年)

冊 企	一一一	貝伽炸	711 1111 117	(2013)	2021 +)				
年齢別漁獲尾数	汝(千尾)								
年	2013	2014	2015	2016	2017	2018	2019	2020	2021
1歳	2,167	1,699	2,059	1,211	1,136	1,440	966	524	345
2歳	3,805	2,841	3,391	2,294	2,152	2,407	2,208	1,648	1,063
3歳	2,170	1,886	1,750	1,471	1,329	1,480	1,478	1,225	873
4歳以上	1,448	1,355	1,116	963	844	987	980	853	619
計	9,589	7,782	8,316	5,939	5,462	6,313	5,632	4,250	2,901
年齢別漁獲量(トン)								
年	2013	2014	2015	2016	2017	2018	2019	2020	2021
1歳	44	34	42	24	23	29	20	11	7
2歳	220	164	196	133	125	139	128	95	62
3歳	250	217	202	169	153	170	170	141	101
4歳以上	312	292	241	207	184	214	215	188	137
計	826	708	681	534	485	553	532	435	306
年齢別漁獲係数	汝								
年	2013	2014	2015	2016	2017	2018	2019	2020	2021
1歳	0.17	0.14	0.19	0.11	0.10	0.13	0.09	0.05	0.04
2歳	0.53	0.44	0.54	0.39	0.36	0.39	0.36	0.26	0.17
3歳	0.66	0.69	0.66	0.59	0.50	0.55	0.53	0.42	0.25
4歳以上	0.66	0.69	0.66	0.59	0.50	0.55	0.53	0.42	0.25
単純平均	0.51	0.49	0.51	0.42	0.37	0.40	0.38	0.29	0.18
年齢別資源尾数	汝(千尾)								
年	2013	2014	2015	2016	2017	2018	2019	2020	2021
1歳	16,078	15,678	14,405	13,523	14,081	14,059	13,490	12,429	9,602
2歳	10,948	9,511	9,622	8,423	8,513	8,969	8,698	8,695	8,319
3歳	5,349	4,521	4,317	3,934	4,010	4,192	4,300	4,276	4,744
4歳以上	3,569	3,248	2,754	2,576	2,545	2,794	2,853	2,977	3,366
計	35,944	32,958	31,098	28,456	29,148	30,014	29,341	28,377	26,031
年齢別資源量(トン)								
年	2013	2014	2015	2016	2017	2018	2019	2020	2021
1歳	325	317	291	273	284	284	272	251	194
2歳	634	551	557	488	493	519	504	503	482
3歳	616	521	497	453	462	483	495	493	547
4歳以上	769	700	595	553	555	607	625	655	745
計	2,344	2,088	1,940	1,767	1,794	1,893	1,896	1,902	1,968
年齢別親魚量(トン)								
年	2013	2014	2015	2016	2017	2018	2019	2020	2021
1歳	0	0	0	0	0	0	0	0	0
2歳	254	220	223	195	197	208	201	201	193
3歳	616	521	497	453	462	483	495	493	547
4歳以上	769	700	595	553	555	607	625	655	745
計	1,639	1,441	1,315	1,202	1,214	1,298	1,321	1,349	1,485

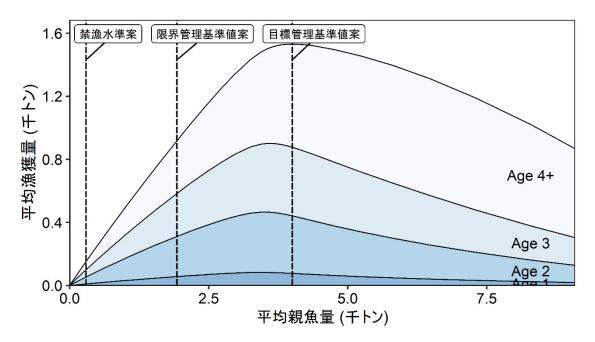
補足資料3 管理基準値案と禁漁水準案等

令和3年10月に開催された「管理基準値等に関する研究機関会議」により、目標管理基準値(SBtarget)には MSY 水準における親魚量(SBmsy: 40 百トン)、限界管理基準値(SBlimit)には MSYの60%が得られる親魚量(SB0.6msy: 19 百トン)、禁漁水準(SBban)には MSYの10%が得られる親魚量(SB0.1msy: 3 百トン)を用いることが提案されている(八木ほか2021、補足表6-2)。

目標管理基準値案と、MSY を実現する漁獲圧 (F) を基準にした神戸プロットを補足図 3-1 に示す。コホート解析により得られた 2021 年の親魚量 (SB2021:15 百トン) は目標管理基準値案と限界管理基準値案を下回る。本系群における 2020 年以降の漁獲圧は、MSY を実現する漁獲圧を下回っている (補足図 3-1、補足表 6-3)。


平衡状態における平均親魚量と年齢別平均漁獲量との関係を補足図 3-2 に示す。親魚量が SBlimit 以下では 1~3 歳魚が多くを占めるが、親魚量が増加するにつれて高齢魚の比率が高くなる傾向がみられ、SBmsy 達成時においては 3 歳以上の漁獲が主体となると推測された。

引用文献


八木佑太・藤原邦浩・飯田真也・佐久間啓・吉川 茜・白川北斗(2021) 令和 3 (2021) 年 度ムシガレイ日本海南西部系群の管理基準値等に関する研究機関会議資料. 水産研究・ 教育機構. 1-22. FRA-SA2021-BRP12-2.

http://www.fra.affrc.go.jp/shigen hyoka/SCmeeting/2019-

1/20211026/doc mushigarei japansea-sw RIM.pdf (last accessed 13 August 2022)

補足図3-1. 管理基準値案と親魚量・漁獲圧との関係(神戸プロット)

補足図 3-2. 平衡状態における平均親魚量と年齢別平均漁獲量との関係(漁獲量曲線)

補足資料 4 漁獲管理規則案に対応した将来予測

(1) 将来予測の設定

資源評価で推定した 2021 年の資源量から、コホート解析の前進法を用いて 2022~2053 年までの将来予測計算を行った (補足資料 5)。将来予測における加入量は、各年の親魚量から予測される値を再生産関係式から与えた。加入量の不確実性として、対数正規分布に従う誤差を仮定し、1,000回の繰り返し計算を行った。2022年の漁獲量は、予測される資源量と現状の漁獲圧 (F2019-2021) から仮定し、生物パラメータ (平均体重等) は管理基準値案を算出した時と同じ条件とした。2023 年以降の漁獲圧には、各年に予測される親魚量をもとに下記の漁獲管理規則案で定められる漁獲圧を用いた。

(2) 漁獲管理規則案

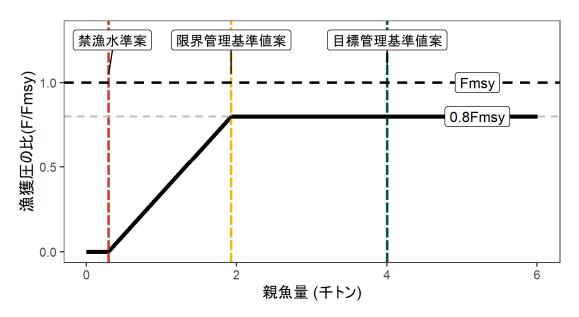
漁獲管理規則案は、目標管理基準値案以上に親魚量を維持・回復する達成確率を勘案して、親魚量に対応した漁獲圧 (F) 等を定めたものである。「漁獲管理規則および ABC 算定のための基本指針」では、親魚量が限界管理基準値案を下回った場合には禁漁水準案まで直線的に漁獲圧を削減するとともに、親魚量が限界管理基準値以上にある場合には Fmsy に調整係数 β を乗じた値を漁獲圧の上限とするものを提示している。補足図 4-1 に本系群の「管理基準値等に関する研究機関会議」により提案された漁獲管理規則を示す。ここでは例として調整係数 β を 0-8 とした場合を示した。なお、研究機関会議提案では「親魚量が限界管理基準値を下回るリスクは低いが、本資源は資源評価対象期間が短く再生産関係等に不確実性が懸念されるため、 β は標準値である 0-8 以下にすることが望ましい。」とされている。

(3) 2023年の予測値

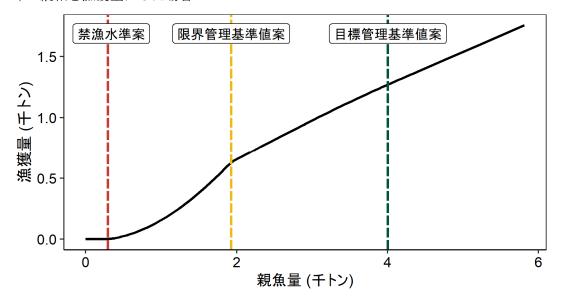
漁獲管理規則に基づき試算された 2023 年の平均漁獲量は、 β を 0.8 とした場合には 4 百トン、 β を 1.0 とした場合には 5 百トンであった(補足表 6-4)。2023 年に予測される親魚量は、いずれの繰り返し計算でも限界管理基準値を下回り、平均 16 百トンと見込まれた(補足表 4-3)。この親魚量は限界管理基準値未満であるため、2023 年の漁獲圧は親魚量に応じた係数を乗じて $\gamma(SBt) \times \beta$ Fmsy として求めた。ここで 2023 年の $\gamma(SBt)$ は「漁獲管理規則および ABC 算定のための基本指針」における 1 系資源の管理規則に基づき、下式により 0.78 と計算された。

$$\gamma(SB_t) = \frac{SB_t - SB_{ban}}{SB_{limit} - SB_{ban}}$$

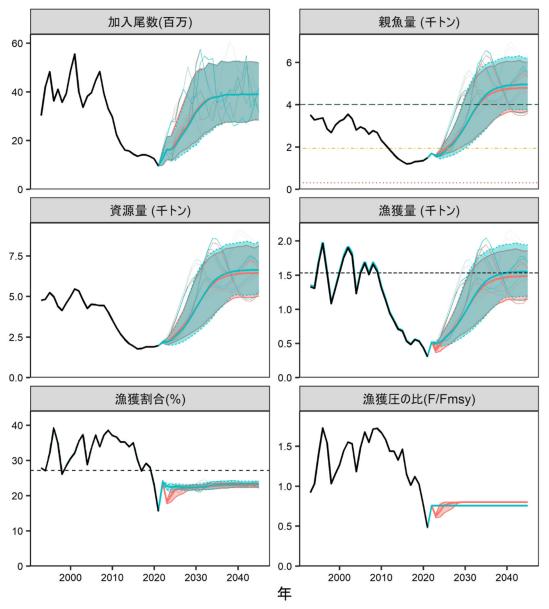
(4) 2024 年以降の予測


2024年以降も含めた将来予測の結果を補足図 4-2 および補足表 4-1~4-4 に示す。

漁管理規則案に基づく管理を 10 年間継続した場合、2033 年の親魚量の予測値は β を 0.8 とした場合には 39 百トン (90%予測区間は 28 百~51 百トン) であり、 β を 1.0 とした場合には 28 百トン (90%予測区間は 20 百~38 百トン) である (補足表 6-5)。予測値が目標管


理基準値案を上回る確率は β が 0.7以下で 50%を上回る。限界管理基準値案を上回る確率はいずれの β においても 50%を上回る。現状の漁獲圧(F2019-2021)を継続した場合の 2033年の親魚量の予測値は 40 百トン(90%予測区間は 28 百~52 百トン)であり、目標管理基準値案を上回る確率は 48%、限界管理基準値案を上回る確率は 99%である。

漁獲管理規則案に基づく管理を継続した場合、親魚量が目標管理基準値案を 50%以上の確率で上回る年は、βを0.8とした場合には2034年以降となると予測された(補足表6-5)。また、限界管理基準値を 50%以上の確率で上回る年は、2026年と予測された。仮に漁獲圧をゼロにした場合でも (β=0)、親魚量が目標管理基準値案を 50%以上の確率で上回るのは 2027年になると予測された。


a) 縦軸を漁獲圧にした場合

b) 縦軸を漁獲量にした場合

補足図 4-1. 漁獲管理規則案 目標管理基準値 (SBtarget) 案は HS 再生産関係に基づき 算出した SBmsy である。限界管理基準値案 (SBlimit) および禁漁水準案 (SBban) には、それぞれ標準値を用いている。調整係数βには標準値である 0.8 を用いた。黒 破線は Fmsy、灰色破線は 0.8 Fmsy、黒太線は HCR、赤破線は禁漁水準案、黄破線は 限界管理基準値案、緑破線は目標管理基準値案を示す。a) は縦軸を漁獲圧にした場 合、b) は縦軸を漁獲量で表した場合である。b) については、漁獲する年の年齢組 成によって漁獲量は若干異なるが、ここでは平衡状態における平均的な年齢組成の 場合の漁獲量を示した。

補足図 4-2. 漁獲管理規則案を用いた場合(赤色)と現状の漁獲圧での将来予測(緑色) 太実線は平均値、網掛けはシミュレーション結果の 90%が含まれる 90%予測区間、 細線は 3 通りの将来予測の例示である。親魚量の図の緑破線は目標管理基準値案、 黄点線は限界管理基準値案、赤線は禁漁水準案を示す。漁獲割合の図の破線は Umsy を示す。2022 年の漁獲は予測される資源量と現状の漁獲圧(F2019-2021)に より仮定し、2023 年以降の漁獲は漁獲管理規則案(図 4-1)に従うものとした。調 整係数βには 0.8 を用いた。

β	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2043	2053
1	0	0	0	0	0	0	0	0	0	1	2	3	6	41	45
0.9	0	0	0	0	0	0	0	0	1	2	7	14	21	67	69
0.8	0	0	0	0	0	0	0	1	3	9	20	32	46	86	86
0.7	0	0	0	0	0	0	0	2	9	25	42	61	74	96	96
0.6	0	0	0	0	0	0	1	7	25	48	71	85	93	99	100
0.5	0	0	0	0	0	0	2	18	49	75	91	97	99	100	100
0.4	0	0	0	0	0	0	8	39	75	94	98	100	100	100	100
0.3	0	0	0	0	0	1	19	67	93	99	100	100	100	100	100
0.2	0	0	0	0	0	4	42	88	99	100	100	100	100	100	100
0.1	0	0	0	0	0	13	71	98	100	100	100	100	100	100	100
0	0	0	0	0	0	30	90	100	100	100	100	100	100	100	100
F2019-2021	0	0	0	0	0	0	0	1	4	10	21	34	48	89	92

補足表 4-1. 将来の親魚量が目標管理基準値案を上回る確率

太字は漁獲管理規則に基づく管理開始から10年目となる目標年の値を示す。

補足表 4-2. 将来の親魚量が限界管理基準値案を上回る確率

β	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2043	2053
1	0	0	0	0	12	26	39	58	71	80	86	90	93	100	100
0.9	0	0	0	1	23	47	62	79	88	93	96	97	98	100	100
0.8	0	0	0	2	40	66	81	92	98	99	99	100	100	100	100
0.7	0	0	0	6	62	83	93	98	100	100	100	100	100	100	100
0.6	0	0	0	12	80	94	98	100	100	100	100	100	100	100	100
0.5	0	0	0	25	92	99	100	100	100	100	100	100	100	100	100
0.4	0	0	0	43	98	100	100	100	100	100	100	100	100	100	100
0.3	0	0	0	64	100	100	100	100	100	100	100	100	100	100	100
0.2	0	0	0	82	100	100	100	100	100	100	100	100	100	100	100
0.1	0	0	0	93	100	100	100	100	100	100	100	100	100	100	100
0	0	0	0	99	100	100	100	100	100	100	100	100	100	100	100
F2019-2021	0	0	0	0	21	50	68	82	90	95	98	99	99	100	100

太字は漁獲管理規則に基づく管理開始から10年目となる目標年の値を示す。

補足表 4-3. 将来の親魚量の平均値の推移(百トン)

β	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2043	2053
1	15	17	16	16	18	18	19	20	22	23	25	26	28	38	39
0.9	15	17	16	17	18	19	20	22	24	26	28	31	33	43	44
0.8	15	17	16	17	19	20	22	24	27	30	33	36	39	48	48
0.7	15	17	16	18	20	22	24	27	31	35	39	43	46	53	53
0.6	15	17	16	18	21	23	26	31	35	41	46	50	53	59	58
0.5	15	17	16	19	22	25	29	35	41	47	53	58	61	65	65
0.4	15	17	16	19	23	27	32	39	47	55	61	66	69	73	73
0.3	15	17	16	20	25	29	36	44	54	63	70	74	77	83	83
0.2	15	17	16	20	26	32	40	50	62	72	79	84	88	95	95
0.1	15	17	16	21	28	35	44	57	70	82	90	96	100	110	110
0	15	17	16	22	30	38	49	64	80	93	103	110	115	129	129
F2019-2021	15	17	16	16	18	20	21	24	27	30	33	37	40	50	49

太字は漁獲管理規則に基づく管理開始から10年目となる目標年の値を示す。

補足表 4-4. 将来の漁獲量の平均値の推移(百トン)

β	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2043	2053
1	3	5	5	5	6	7	7	8	8	9	10	10	11	15	15
0.9	3	5	4	5	6	7	7	8	9	9	10	11	12	15	15
0.8	3	5	4	5	6	6	7	8	9	10	11	12	12	15	15
0.7	3	5	4	4	5	6	7	8	9	10	11	12	13	14	14
0.6	3	5	3	4	5	6	7	8	9	10	11	12	13	14	14
0.5	3	5	3	4	4	5	6	7	8	10	11	12	12	13	13
0.4	3	5	2	3	4	5	5	7	8	9	10	11	11	12	12
0.3	3	5	2	3	3	4	5	6	7	8	9	9	9	10	10
0.2	3	5	1	2	2	3	3	4	5	6	7	7	7	8	8
0.1	3	5	1	1	1	2	2	2	3	3	4	4	4	5	5
0	3	5	0	0	0	0	0	0	0	0	0	0	0	0	0
F2019-2021	3	5	5	5	6	6	7	8	9	10	11	12	13	15	15

太字は漁獲管理規則に基づく管理開始から10年目となる目標年の値を示す。

補足資料 5 将来予測の方法

将来予測は、「令和 4 (2022) 年度 漁獲管理規則および ABC 算定のための基本指針(FRA-SA2022-ABCWG02-01)」の 1 系資源の管理規則に従い、令和 3 年 10 月に開催された「管理基準値等に関する研究機関会議」において最大持続生産量 MSY を実現する F (Fmsy) の推定に用いた再生産関係(八木ほか 2021)と、補足表 5-1 に示した各種設定(自然死亡係数、成熟率、年齢別平均体重、現状の漁獲圧)を使用して実施した。資源尾数や漁獲量の予測計算には、「再生産関係の推定・管理基準値計算・将来予測シミュレーションに関する技術ノート(FRA-SA2022-ABCWG02-04)」に基づき、統計ソフトウェア R (version 4.1.0) および計算パッケージ frasyr (コミット番号 1c8799a) を用いた。

将来予測における1~3歳魚の資源尾数は以下の式で求めた。

$$N_{a,y} = N_{a-1,y-1} \exp(-M_{a-1} - F_{a-1,y-1}) \qquad (a = 1,...,3)$$
(7)

4歳魚以上のプラスグループの資源尾数は以下の式で求めた。

$$N_{4+,y} = N_{3,y-1} \exp(-M_{3,y-1} - F_{3,y-1}) + N_{4+,y-1} \exp(-M_{4+,y-1} - M_{4+,y-1})$$
(8)

また、各年齢の漁獲尾数は以下の式で求めた。

$$C_{a,y} = N_{a,y} \left(1 - \exp\left(-F_{a,y}\right) \right) \exp\left(-\frac{M_a}{2}\right) \tag{9}$$

将来予測における資源量および漁獲量は、ここで求めた資源尾数または漁獲尾数に補足表 5-1 の平均体重を乗じて求め、親魚量はこの資源量に成熟割合を乗じて算出した。

引用文献

八木佑太・藤原邦浩・飯田真也・佐久間啓・吉川 茜・白川北斗 (2021) 令和 3 (2021) 年度 ムシガレイ日本海南西部系群の管理基準値等に関する研究機関会議資料. 水産研究・教 育機構. 1-22. FRA-SA2021-BRP12-2.

http://www.fra.affrc.go.jp/shigen hyoka/SCmeeting/2019-

1/20211026/doc mushigarei japansea-sw RIM.pdf (last accessed 13 August 2022)

補足表 5-1. 将来予測計算に用いた設定値

	選択率	Fmsy	F2019-2021	平均体重	自然死亡	成熟
	(注1)	(注2)	(注3)	(g)	係数	割合
1歳	0.27	0.12	0.06	20	0.35	0
2歳	0.79	0.36	0.26	58	0.35	0.4
3 歳	1.00	0.46	0.40	115	0.35	1.0
4歳	1.00	0.46	0.40	218	0.35	1.0

- 注1: 令和3年度研究機関会議でMSYを実現する水準の推定の際に使用した選択率(すなわち、令和2年度資源評価でのFcurrentの選択率)。
- 注 2: 令和 3 年度研究機関会議で推定された Fmsy (すなわち、令和 2 年度資源評価での Fcurrent に Fmsy/Fcurrent を掛けたもの)。
- 注 3:本系群では 2019~2021 年の F の平均値を現状の漁獲圧としており、この F 値を 2022 年の漁獲量の仮定に使用した。

補足資料 6 各種パラメータと評価結果の概要

補足表 6-1. 再生産関係式のパラメータ

再生産関係式	最適化法	自己相関	a	ь	S.D.	ρ
ホッケー・スティック型	最小二乗法	有	12.419	3,147	0.137	0.675

a と b は各再生産関係式の推定パラメータ、S.D.は加入量の標準偏差、ρ は自己相関係数である。

補足表 6-2. 管理基準値案と MSY

項目	値	説明
SBtarget 案	40 百トン	目標管理基準値案。最大持続生産量 MSY を実現する親魚 量(SBmsy)。
SBlimit 案	19 百トン	限界管理基準値案。MSY の 60%の漁獲量が得られる親魚量(SB0.6msy)。
SBban 案	3 百トン	禁漁水準案。MSY の 10%の漁獲量が得られる親魚量 (SB0.1msy)。
Fmsy		産量 MSY を実現する漁獲圧(漁獲係数 F) 3 歳, 4 歳以上) , 0.46, 0.46)
%SPR (Fmsy)	31%	Fmsy に対応する%SPR
MSY	15 百トン	最大持続生産量 MSY

補足表 6-3. 最新年の親魚量と漁獲圧

項目	値	説明				
SB2021	15 百トン	2021 年の親魚量				
F2021		2021年の漁獲圧(漁獲係数 F) (1 歳, 2 歳, 3 歳, 4 歳以上) =(0.04, 0.17, 0.25, 0.25)				
U2021	16%	2021 年の漁獲割合				
%SPR (F2021)	51%	2021 年の%SPR				
%SPR (F2019-2021)	38%	現状(2019~2021年)の漁獲圧に対応する%SPR*				
管理基準値案との比較	交					
SB2021/ SBmsy (SBtarget)	0.37	最大持続生産量を実現する親魚量(目標管理基準値 案)に対する 2021 年の親魚量の比				
F2021/ Fmsy	0.48	最大持続生産量を実現する漁獲圧に対する 2021 年 の漁獲圧の比*				
親魚量の水準	MSY を実現する水準を下回る					
漁獲圧の水準	MSY を実現する水準を下回る					
親魚量の動向	増加					

^{*2021}年の選択率の下で Fmsy の漁獲圧を与える Fを%SPR 換算して算出し求めた比率。

補足表 6-4. 予測漁獲量と予測親魚量

2023年の親魚量(予測平均値):16百トン							
項目	2023 年の 漁獲量 (百トン)	現状の漁獲圧に 対する比 (F/F2019-2021)	2023 年の 漁獲割合(%)				
β=1.0	5	0.78	22.1				
β=0.9	4	0.70	20.1				
β=0.8	4	0.62	18.2				
β=0.7	4	0.55	16.1				
β=0.6	3	0.47	14.0				
β=0.5	3	0.39	11.9				
β=0.4	2	0.31	9.7				
β=0.3	2	0.23	7.3				
β=0.2	1	0.16	5.0				
β=0.1	1	0.08	2.5				
β=0	0	0	0				
F2019-2021	5	1.00	22.7				

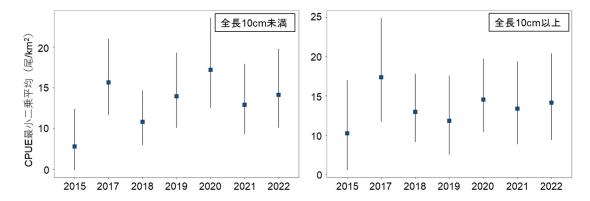
補足表 6-5. 異なる β を用いた将来予測結果

考慮している不確実性: 加入量								
β	2033 年 の親魚量	90% 予測区間	2033 年に親魚量が以下の 管理基準値案を上回る確率(%)					
·	(百トン)	(百トン)	SBtarget 案	SBlimit 案	SBban 案			
β=1.0	28	20 - 38	6	93	100			
β=0.9	33	23 – 44	21	98	100			
β=0.8	39	28 – 51	46	100	100			
β=0.7	46	35 – 57	74	100	100			
β=0.6	53	42 – 64	93	100	100			
β=0.5	61	49 – 72	99	100	100			
β=0.4	69	56 – 81	100	100	100			
β=0.3	77	64 – 92	100	100	100			
β=0.2	88	73 – 104	100	100	100			
β=0.1	100	84 – 118	100	100	100			
β=0	115	97 – 136	100	100	100			
F2019-2021	40	28 – 52	48	99	100			

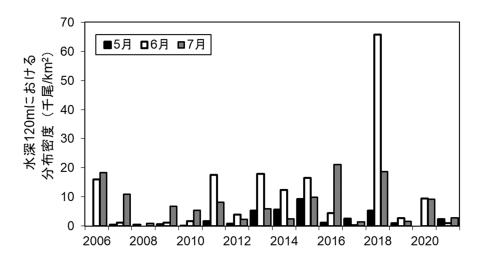
補足表 6-5. 異なる β を用いた将来予測結果(つづき)

考慮している不確実性:加入量							
β	親魚量が管理基準値案を50%以上の確率で上回る年						
ρ	SBtarget 案	SBlimit 案	SBban 案				
β=1.0	_	2028年	2022年				
β=0.9	2037年	2027年	2022年				
β=0.8	2034年	2026年	2022年				
β=0.7	2032年	2025年	2022年				
β=0.6	2031年	2025年	2022年				
β=0.5	2030年	2025年	2022年				
β=0.4	2029年	2025年	2022年				
β=0.3	2028年	2024年	2022年				
β=0.2	2028年	2024年	2022年				
β=0.1	2027年	2024年	2022年				
β=0	2027年	2024年	2022年				
F2019-2021	2034年	2027年	2022年				

補足資料 7 調査結果の概要


山口県水産研究センターでは、対馬東方海域において漁業調査船かいせいにより幅 4.5 m の桁網を用いた新規加入量調査を実施している。調査海域におけるムシガレイ(全長 10 cm 未満および 10 cm 以上に区分)の出現状況と調査年の関係を調べるため、6~8 月に実施された調査結果に基づき CPUE-LogNormal モデル(庄野 2004)を構築した。ゼロキャッチに対応するため、微小値(0.1)を加えたムシガレイの採集尾数を曳網距離で除し、その自然対数を目的変数とした。調査年、調査月、水深、水温を説明変数とし、それら 4 変数の交互作用を含むフルモデルを構築した。説明変数の有無を変えて Akaike's Information Criterion による総当たりモデル選択を行った結果、全長 10 cm 未満では調査年と調査月および水深を含むモデル、全長 10 cm 以上では調査年と水深および水温を含むモデルがベストモデルとして選ばれた。CPUE の年トレンドを抽出するため、ベストモデルにおける調査年効果の最小二乗平均(Grafen and Hails 2002)を求めた。当歳魚主体とみられる全長 10 cm 未満の CPUE 最小二乗平均は調査期間内において増減を繰り返しており(補足図 7-1)、2021 年は前年の値を下回ったが、2022 年はやや増加した。全長 10 cm 以上の CPUE 最小二乗平均は 2017 年から 2019 年にかけて減少、2020 年に一旦増加した後、2021 年は減少しており、本系群の資源量推定値(図 4-1)と概ね類似した推移を示している。

鳥取県栽培漁業センターでは、沿岸性異体類の当歳魚分布量の把握を目的として、例年 $4\sim9$ 月にビーム長 5 m のビームトロールを用いた漁船用船調査を実施している。本調査におけるムシガレイ当歳魚の主な出現時期および水深帯である $5\sim7$ 月の水深 120 m における分布密度を補足図 7-2 に示す。当歳魚の分布密度(千尾/ km^2)は、2013 年以降 6 月もしくは 7 月に比較的高い値を示したが、2017 年はいずれの月も低い値であった。2018 年の分布密度は 6 月に 66 と突出して高い値を示した。2020 年は 5 月には採集されず、6 月と 7 月については過去の平均値とほぼ同等の値であった。2021 年についてはいずれの月も低い分布密度であった。


引用文献

Grafen, A., R. Hails (2002) Modern statistics for the life sciences. Oxford University Press, Oxford, 345 pp.

庄野 宏 (2004) CPUE 標準化に用いられる統計学的アプローチ. 水産海洋研究, 68, 106-120.

補足図 7-1. 山口県対馬東方海域におけるムシガレイの CPUE-LogNormal モデルの CPUE 最小二乗平均の推移。モデルの構造は本文参照のこと。黒線は 95%信頼区間を示す。 2016年は10月と12月に調査が実施されたため解析データに含めなかった。

補足図 7-2. 鳥取県中部沖におけるムシガレイ当歳魚の分布密度の月別推移

補足資料8 2そうびき沖底の漁獲成績報告書を用いた資源量指標値の算出方法

2 そうびき沖底の漁獲成績報告書では、月別漁区 (10 分枡目) 別の漁獲量と網数が集計されている。これらより、月 i 漁区 j における CPUE (U) は次式で表される。

$$U_{i,j} = \frac{C_{i,j}}{X_{i,j}}$$

上式でCは漁獲量を、Xは努力量(網数)をそれぞれ示す。

集計単位(月または小海区)における資源量指数(P)はCPUEの合計として次式で表される。

$$P = \sum_{i=1}^{I} \sum_{j=1}^{J} U_{i,j}$$

集計単位における有効漁獲努力量(X') と漁獲量(C)、資源量指数(P)の関係は次式のように表される。

$$P = \frac{CJ}{X'}$$
 すなわち $X' = \frac{CJ}{P}$

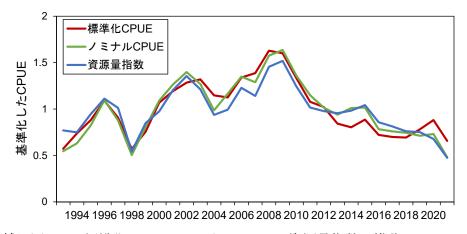
上式でJは有漁漁区数であり、資源量指数 (P) を有漁漁区数 (J) で除したものが資源 密度指数 (D) である。

$$D = \frac{P}{J} = \frac{C}{X'}$$

広がりのある漁場内では魚群の密度は濃淡があるのが通常であり、魚群密度が高いところに漁船が集中して操業した場合、総漁獲量を総網数で割った CPUE は高い方に偏る。そこで漁場を 10 分枡目の漁区に細分し、漁区内での密度は一様と仮定して、魚群や努力量の偏りを補正し、資源量を指数化したのが資源量指数と資源密度指数である。

2 そうびき沖底のように有漁漁区数が減少した場合、漁船の漁区の選択性が資源量指数 と資源密度指数に影響を与える。底びき網は複数の魚種を対象とし、魚種によって分布密 度が高い場所が異なるため、有漁漁区数の減少は漁獲の主対象となる魚種の分布密度が高 い漁区に操業が集中することが考えられる。このような場合、資源密度指数は密度が高い 漁区の平均となるので過大となる。一方、資源量指数では密度が低い漁区のデータが無い のでその分だけ過小となる。

補足資料 9 標準化 CPUE の計算方法


1993~2021年における2そうびき沖底の漁獲成績報告書に基づき、緯度経度10分漁区解像度の日別・漁船別漁獲量と網数をデータとして用いた。海洋環境データとしては、ETOPO1 global relief model (https://www.ngdc.noaa.gov/mgg/global/global.html) から水深を切り出して用いた。今回使用したデータはゼロキャッチ(操業しているが漁獲量は 0)を含む連続値のため、標準化モデルには delta-GLM(Lo et al. 1992)を用いた。このモデルは、有漁となる確率を予測するモデル(有漁確率モデル)と有漁時の CPUE(自然対数値)を予測するモデル(有漁 CPUE モデル)の 2 つを別々に解析するものであり、それぞれのモデルの誤差分布には二項分布と正規分布を設定した。各モデルにおいて最も複雑な候補モデル(フルモデル)の説明変数には、年、季節、海区、水深、漁船IDの固定効果(すべてカテゴリカル変数)と、年と海区の交互作用を設定した。海区は、2 そうびき沖底における漁場の変遷、ムシガレイの CPUE 分布などを考慮し、東経 130 度の東西で 2 つに分割した。各モデルにおいて、説明変数の有無を変えて AIC による総当たりのモデル選択を行った結果、以下のフルモデルがベストモデルに選ばれた。ベストモデルにおいて、有漁か否かの判別性能は十分であり、有漁 CPUE の残差の正規性・等分散性にも問題がないことが確認されたため、これらのモデルを用いて標準化 CPUE を計算した(補足図 9-1)。

有漁確率モデル:有漁確率~切片+年+季節+海区+水深+漁船 ID+年:海区 有漁 CPUE モデル: ln(CPUE)~切片+年+季節+海区+水深+漁船 ID+年:海区

なお、モデル構築、標準化 CPUE の予測およびモデル診断の詳細を別途説明文書 (FRA-SA2022-RC04-103) に示す。

引用文献

Lo, N. C. H., L. D. Jacobson and J. L. Squire (1992) Indices of relative abundance from fish spotter data based on Delta-lognormal models. Can. J. Fish. Aquat. Sci., 49, 2515-2526.

補足図 9-1. 標準化 CPUE、ノミナル CPUE、資源量指数の推移