平成 19年度東シナ海底魚の資源評価

責任担当水研:西海区水産研究所(塚本洋一、山本圭介) 参画機関:水産総合研究センター開発調査センター

要 約

主に以西底びき網漁業によって漁獲される底魚のうち、主な分布域が我が国 200 海里外にある キグチ、シログチ、ハモ、マナガツオ類、エソ類、カレイ類(ムシガレイ・メイタガレイ類)の資源は、す べてが低水準である。近年の資源の減少には、外国の漁獲圧が大きく影響している可能性があり、 日本の漁獲努力量は著しく減少していることから、我が国 200 海里内に分布する資源の密度に応 じた漁獲を続けるのが適当である。

魚種	年	資源量	漁獲量(トン)	F値	漁獲割合
キグチ	2005	_	0	_	_
40)	2006	_	0	_	_
シログチ	2005	_	4	_	_
<u> </u>	2006	_	2	_	_
ハモ	2005	_	6	_	_
	2006	-	6	-	_
エソ類	2005	-	28	-	_
<u> </u>	2006	-	23	-	_
マナガツオ類	2005	_	6	_	_
マノルノス類	2006	_	13	_	_
カレイ類	2005	_	120	_	_
カレイ類	2006	_	182	_	_

	水準	動向
キグチ	低位	不明
シログチ	低位	横ばい
ハモ	低位	減少
マナガツオ類	低位	横ばい
エソ類	低位	横ばい
カレイ類	低位	横ばい

1. まえがき

東シナ海には多様な底魚類が生息し、以西底びき網漁業によって漁獲されている。近年の以西 底びき網の主な対象魚種は、キダイ、イボダイ類、イカ類であるが、本報告では東シナ海に分布す るキグチ、シログチ、ハモ、マナガツオ類、エソ類、カレイ類の資源状態について報告する(キダイ、 ケンサキイカについてはそれぞれの資源評価報告書を参照)。

2. 生態

東シナ海は大部分が 200m 以浅の大陸棚が占める海域で、極めて多種の漁獲対象種が存在す

る。我が国における東シナ海底魚の漁獲の大部分は以西底びき網漁業による。エソ類はワニエソ、マエソ、クロエソ、トカゲエソ類等を含み、以西底びき網漁業の開始当初比率の高かったトカゲエソ類は近年ほとんど漁獲されない。マナガツオ類は、主にマナガツオとコウライマナガツオの2種からなり、現在はマナガツオが漁獲の主体と考えられる。カレイ類の漁獲は、我が国漁船が東シナ海・黄海の全域に出漁していた時代には黄海~東シナ海北部に分布するヤナギムシガレイ、ムシガレイ、イヌノシタが主であったが、現在は我が国200海里内を中心に操業しているためメイタガレイ、ナガレメイタガレイ、ムシガレイが主体となっている。本報告ではメイタガレイ類(メイタガレイおよびナガレメイタガレイ)とムシガレイ、ヤナギムシガレイ、イヌノシタをカレイ類とする。(各魚種の詳細については補足資料1参照)

3. 漁業の状況

以西底びき網漁業は、1960年代には30万トン以上の漁獲量を維持していたが、1970年前後に 急減し、1970年前半には漁獲量はおよそ20万トンとなった。その後、1980年頃までは漁獲量は 20万トン程度で安定していたが、1980~1990年代では漸減し、2006年には6千7百トンを漁獲す るのみとなっている(図1)。漁場もかつては東シナ海・黄海の広域に及んでいたが、現在では我が 国200海里内を中心としている(図2)。主要対象種も大きく変化し、現在ではキダイやイボダイ類、 イカ類が大きな割合を占め、グチ類やハモの占める割合は小さくなっている(図3)。本報告の対象 魚種の漁獲量は減少が著しい(図4、表1)。

中国は、底びき網によりキグチ、マナガツオ類とハモを多獲しており、いずれの魚種についても 1990 年代に漁獲量が著しく増加したが、近年の漁獲量はほぼ横ばいとなっている(表 2、FAO 漁獲統計)。特に FAO の漁獲統計によると 2003~2005 年に、グチ類全体では約 80~90 万トン(キグチ 30 万トン前後、シログチ 10 万トン前後)、ハモ類が 30 万トン前後、マナガツオ類が 40 万トン前後の漁獲が報告されている。その他の評価対象種ではエソ類、カレイ類については正確な漁獲統計は存在しないが、かなりの漁獲量があると考えられる。韓国も 2006 年ではキグチとシログチを合わせて約 23 千トン漁獲しているほか、マナガツオ類、カレイ類も我が国に比べて大量に漁獲している(表 2、韓国海洋水産部 漁業生産統計)。

4. 資源の状態

(1)資源評価方法

以西底びき網漁業の漁獲統計を解析し、資源の変動傾向を検討した。東シナ海の陸棚縁辺部において着底トロールによる漁獲試験を行い、現存量を評価した(2000~2006年5~6月調査)。

(2)資源水準・動向

以西底びき網漁業(2 そう曳き)の 2004 年以降の操業漁区は近年の操業漁区に比べると著しく 九州西方海域に偏っている(図 2)。この様な場合、CPUE(kg/網)の経年変化を比較するための 一般的な方法としては、最近年もしくは最も操業漁区面積の小さな年に合わせて CPUE を標準化 するが、本資源の場合、2004 年以降の操業漁区が極端に少ないため、これに合わせての標準化 では逆に東シナ海底魚の CPUE の長期変化の傾向を知ることが困難になる。そのため 2003 年以前の CPUE は 2003 年の操業漁区を基準として算出し、2004 年以降の CPUE については総漁獲量/総網数として算出し参考値として留める(図 5)。 ムシガレイの CPUE は比較的安定しており若干増加傾向を示しているが、他のすべての魚種では CPUE は低い水準にある。 2006 年の主要魚種の CPUE は、エソ類は激減、その他は横ばい傾向であった。 着底トロール調査によるマエソ類の種ごとの現存量値を見るとマエソとワニエソの変動が激しいことから、漁場の関係で年によりどちらかの種を選択的に捕ることにより、極端に漁獲量が変動した可能性が考えられる。

CPUE の長期的な変動傾向(1971~2006 年、カレイ類は 1982~2006 年)からすべての資源の水準を低位と判断する。2002~2006 年の 5 年間の傾向から、シログチは横ばい、ハモは減少、マナガツオ類は横ばい、エソ類は横ばい(2005 年以降の漁獲量は大きく落ち込んでいるが、調査船の現存量は横ばいであるため)、カレイ類は横ばいと判断する。キグチは近年ほとんど漁獲されておらず、現存量調査結果からも特定の傾向を判断するのは困難なので不明とする。

着底トロール調査結果による、漁獲効率を 1 とした場合の現存量計算値を 1998~1999 年に行われた同様の調査(日本周辺陸棚資源緊急調査)の結果とともに示す。

Æ	1000	1000	2000	2001	2002	2002	2004	2005	2006	2007
年	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007
キグチ	275±193	587±385	31±29	389±540	169±262	29±32	397±437	2±4	132±161	377±555
シログチ	_	1±1	13±20	51±37	34±31	17±26	32±32	-	14±16	14±20
ハモ	322±273	221±153	1,337±1,926	767±428	892±645	434±432	206±229	493±339	344±292	750±537
マナガツオ	_	6±12	614±1,065	165±243	16±33	I	139±160	25±36	373±326	8±16
メイタガレイ	75±65	34±18	30±32	133±100	57±69	66±51	17±17	74±47	55±49	
ナガレメイタガレイ	126±51	85±33	48±33	94±49	54±29	43±22	19±16	12±16	35±23	100±43
マエソ	19±23	4±4	73±75	41±30	4±4	57±38	16±12	130±89	9±6	62±6
ワニエソ	64±44	162±70	109±79	29±35	_	55±65	136±111	21±25	132±92	48±25
クロエソ	252±183	211±109	241±157	231±109	277±129	203±153	164±99	130±68	173±106	230±52

数字の上下限は95%信頼区間を示す。単位:トン、対象面積:138 千 km²、1998・1999 年と2000~2006 年は調査 船が異なる。

5. 資源管理の方策

本報告で対象とする資源の大部分が、産卵場を含む主分布域が我が国 200 海里外に存在する種である。我が国の漁獲努力が著しく減少している一方、中国と韓国はこれら資源を大量に漁獲しており、近年の資源減少は外国の漁獲による影響が大きいと推察される。

我が国の以西底びき網漁業の現状の漁獲努力が、本報告の対象資源に与える影響はあまり大きくはないと考えられるので、資源の増減傾向に合わせて漁獲を継続することが妥当である。現状の漁獲努力の水準で漁獲を続ければ、多くの魚種について、資源の変動に付随して漁獲量が決まってくると考えられる。

表 1 以西底びき網漁業の漁獲量

(トン)	キグチ	シログチ	ハモ	エソ類	マナガツオ類	カレイ類
1982	1,147	19,641	12,183	8,585	7,825	6,253
1983	637	17,749	9.797	6,063	8,606	5,894
1984	839	15,653	8,960	5,529	4,932	4,190
1985	720	12,540	7,229	3,783	3,892	4,493
1986	1,196	10,657	6,370	3,499	3,824	3,847
1987	1,433	10,108	7,279	4,065	2,567	3,056
1988	605	9,168	4,551	2,488	1,968	2,215
1989	435	6,428	4,525	2,822	1,917	2,090
1990	591	5,777	3,526	1,982	2,005	1,617
1991	335	6,593	3,284	2,088	1,194	1,602
1992	133	4,528	3,498	1,601	547	1,782
1993	90	2,220	2,127	1,245	349	2,129
1994	83	2,352	2,363	1,090	186	1,373
1995	107	3,273	1,688	1,015	260	1,167
1996	8	1,478	582	379	92	1,933
1997	18	440	645	248	36	674
1998	5	214	421	208	38	467
1999	0.17	87	419	313	19	407
2000	0.56	22	43	132	9	191
2001	0	25	64	155	5	234
2002	0	50	15	157	14	190
2003	0	17	27	141	14	218
2004	0	9	6	240	5	199
2005	0	4	6	28	6	121
2006	0	2	6	23	13	182

表 2 中国・韓国の漁獲量

	中国(万トン)			韓国(百トン)				
	キグチ	ハモ	マナガツオ類	キグチ	シログチ	ハモ	マナガツオ類	カレイ類
1989	2	5	7	186		31	85	159
1990	2	7	8	279		27	104	132
1991	5	8	9	374		31	102	131
1992	6	9	7	397		26	89	146
1993	8	11	12	309	9	38	81	135
1994	10	14	14	372	20	22	98	133
1995	15	15	21	252	26	16	109	137
1996	25	18	22	229	25	14	95	181
1997	14	18	24	218	16	25	108	181
1998	19	24	30	150	18	15	132	201
1999	24	23	34	135	22	19	152	196
2000	28	22	34	196	19	19	78	154
2001	25	24	35	79	10	11	68	145
2002	26	26	39	109	7	9	62	138
2003	28	29	37	71	5	8	75	131
2004	31	32	39	176	3	8	93	120
2005	33	29	33	153	3	8	114	153
2006	_	_	<u> </u>	214	3	7	139	199

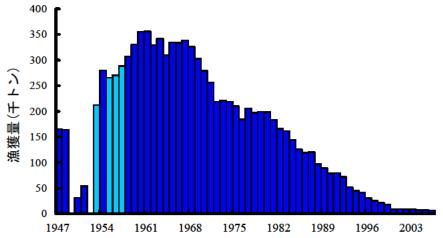


図1 以西底びき網(1そうびき+2そうびき)の漁獲量の推移. 淡色は2そうびきのみの値

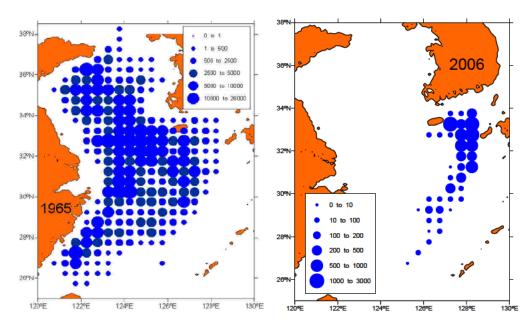


図2 以西底びき網の漁場(単位は曳網数)

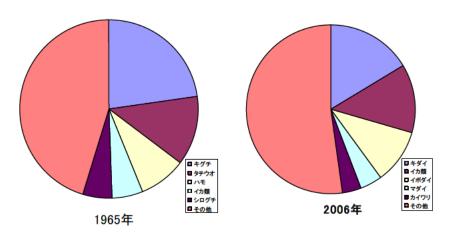
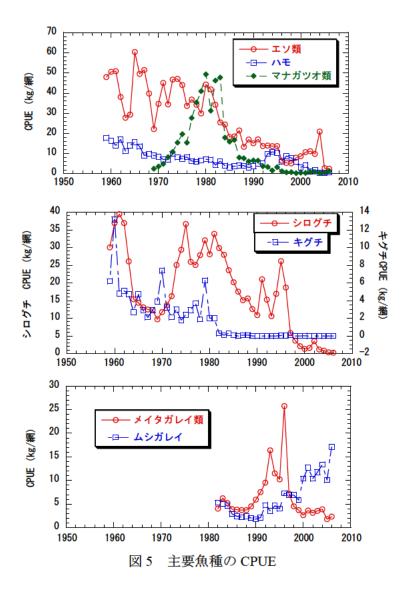



図3 以西底びき網の漁獲対象種

図 4 エソ類、シログチ、キグチ、ハモ、マナガツオ類、カレイ類の漁獲量

補足資料1

1. 生態

キグチは東シナ海および黄海、渤海に分布しており、その主分布域は、日中中間線の中国側である。池田(1964)は東シナ海に分布するキグチを4つの系群に分けている。現在、以西底びき網で漁獲対象となるのは浙江系群であると考えられる(図 6a)。1 年で全長 15cm、2 年で 24cm、3 年で 29cm、4 年で 33cm、5 年で 35cm に成長する(西海区水産研究所 1986)。最低成熟年齢は 2歳。産卵期は 3~6 月、産卵場は朝鮮半島西岸と中国沿岸である。餌生物はエビ類、アミ類、オキアミ、端脚類、快脚類、小魚などである。本種は東シナ海の二べ類の中では最も資源量が多く、かつては以西底びき網の漁獲上位魚種であったが、1960 年代後半には漁獲量が急減した。資源量の減少と共に大型魚が減り、成長率の上昇や成熟年齢の若齢化などの現象が見られた(三尾ほか1975)。

シログチは、インド・太平洋に広く分布しており、我が国の周辺海域では東北以南から東シナ海および渤海、黄海に分布する。東シナ海周辺海域では黄海系群と東シナ海系群の二つの系群があると考えられている。東シナ海系群の分布は東シナ海の大陸棚にあり、南北に季節回遊する。以西底びき網では現在は東シナ海系群のみを漁獲していると考えられる(図 6b)。1 年で 15~16cm、2年で 23cm、3年で 27cm、4年で 29~30cm、5年で 31cm、6年で 32cm に成長する。満1年で約30%が成熟する。餌生物はエビ類、シャコ類、カニ類、端脚類、小型イカ類、小型魚類である(西海区水産研究所1986)。

ハモはインド洋から西部太平洋の暖海域に広く分布する。東シナ海では大陸棚上の中国側に主に分布しており、秋から冬は揚子江河口付近のバーレン沖合水域、春は温州湾南岸域に南下し、その後中国大陸沿岸に沿って北上する季節回遊を行う。晩夏から秋には沖合域に移動し、バーレン東方沖合に移動するが、一部は大陸沿岸をさらに北上して、その後東シナ海中央部へ南下する(大滝 1964、図 6c)。成長は雌雄で異なり、雌の頭胴長は 2 年で 11cm、5 年で 29cm、10 年で 47cm、10 年で 47cm、雄は 2 年で 11cm、5 年で 25cm、10 年で 35cm に成長する。成熟年齢は資源の減少と共に若齢化が進み近年では 8 歳程度でほぼすべての個体が成熟している。主にエビ・カニ類、魚類、イカ・タコ類を捕食する。

エソ科魚類の多くはインド・太平洋の暖海域に広く分布しており、いずれの種も魚類を主要な餌料としている。東シナ海ではマエソ属のマエソ、トガゲエソ(コウカイトカゲエソ)、クロエソ、ワニエソ等が以西底びき網の対象魚種となっていたが、コウカイトカゲエソは東シナ海水域での分布域が北偏しているため、近年ではほとんど漁獲されない。マエソとクロエソは過去同種として扱われており、その分布域は東シナ海水域では九州西岸から台湾北部に至る大陸棚上であるとされてきたが、マエソは100m以浅、クロエソは100m以深の砂泥底に生息する種であることが明らかとなった。マエソは特に東シナ海南部で多獲され、これらの群は中国大陸沿岸域で5~6月頃産卵すると考えられている。瀬戸内海の個体では雄は1年で18cm、2年で23cm、3年で29cm、雌は1年で20cm、2年で25cm、3年で31cmに成長する。ワニエソは東シナ海域では主に北緯30~31度以南の中部から南部および台湾海峡に分布する。1年で20cm、2年で31cm、3年で40cm、4年で46cm、5年で50cm、6年で53cmに成長する。主産卵期は4~6月である(西海区水産研究所1986、中坊

1993、酒井ほか 2000、図 6d)。

マナガツオ、コウライマナガツオとも東シナ海全域に分布するが、前者は北緯 30 度以南に、後者は以北に多い。両種とも越冬のため沖合域に移動する(図 6e)。両種ともアミ類、端脚類、橈脚類、多毛類、サルパ類を捕食する。コウライマナガツオは、1年で尾叉長が雄11.1cm、雌12.3cm、2年で雄15.3cm、雌17cm、3年で雄18.5cm、雌20.6cm、4年で雄21cm、雌23.3cm、5年で雄23cm、雌25.4cmに成長する(西海水研 1986、Roitana ほか 2000)。

ムシガレイは東シナ海およびその周辺海域では黄海から韓国沿岸をへて東シナ海中部、メイタガレイは済州島南部〜東シナ海北部、ナガレメイタガレイは東シナ海陸棚縁辺部に分布する(図 6f)。メイタガレイの成長は雄より雌の方がわずかによく、雄が全長 27cm、雌が 29cm 前後に達する。本種は1年で全長10~11cm、2年で17cm、3年で21cm、4年で24cmとなる(ムシガレイの成長についてはムシガレイ日本海系群を参照)。ムシガレイはオキアミ類、アミ類を主体に、メイタガレイはベントス(多毛類、貝類)を主体に捕食する(西海区水産研究所1986、中坊1993)。

引用文献

池田郁夫(1964)東海・黄海におけるキグチの漁業生物学的研究. 西海水研報告, 31, 1-81.

大滝英夫(1964) 東シナ海・黄海産ハモの漁業生物学的研究. 西海水研報告, 32, 59-123.

酒井猛・米田道夫・松山倫也(2000)東シナ海産クロエソの資源生物学的特性(年齢、成長、生殖). 平成11年度日本近海シェアドストック管理調査委託事業報告書,145-158.

西海区水産研究所(1986)東シナ海・黄海のさかな、501pp.

中坊徹次(1993)日本産魚類検索, 1474pp.

三尾真一・浜田律子・篠原富美子(1975)主要底魚資源の成長および成熟の経年変化. 西海水研報告, 47, 51-95.

Roitana、B.・原高志・赤木武之・多部田修(2000) 東シナ海・黄海産コウライマナガツオの生物特性. 平成11年度日本近海シェアドストック管理調査委託事業報告書,96-120.

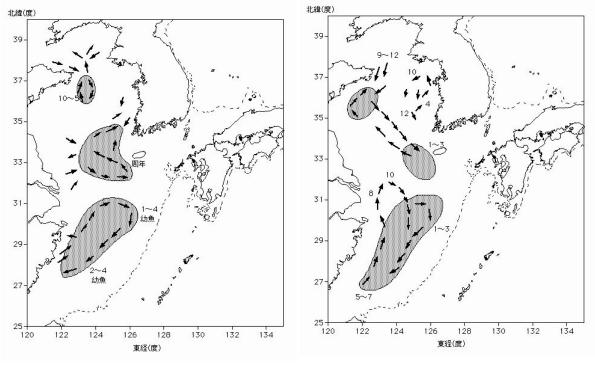


図 6a キグチの分布

図 6b シログチの分布

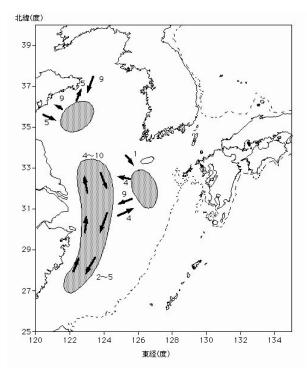


図6c ハモの分布

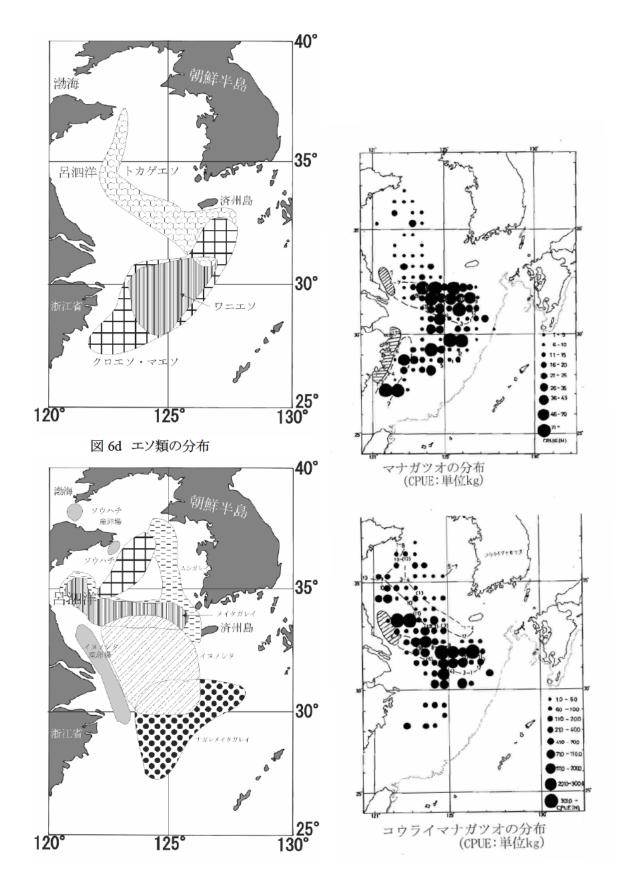


図 6f カレイ類の分布

図 6e マナガツオ類の分布