平成 22 年度マサバ対馬暖流系群の資源評価

責任担当水研:西海区水産研究所(由上龍嗣、依田真里、大下誠二、田中寛繁)

参 画 機 関:日本海区水産研究所、青森県産業技術センター水産総合研究所、秋田 県農林水産技術センター水産振興センター、山形県水産試験場、新潟 県水産海洋研究所、富山県農林水産総合技術センター水産研究所、石 川県水産総合センター、福井県水産試験場、京都府農林水産技術セン ター海洋センター、兵庫県立農林水産技術総合センター但馬水産技術 センター、鳥取県水産試験場、島根県水産技術センター、山口県水産 研究センター、福岡県水産海洋技術センター、佐賀県玄海水産振興セ ンター、長崎県総合水産試験場、熊本県水産研究センター、鹿児島県

要約

水産技術開発センター

マサバ対馬暖流系群の資源量を、資源量指数を考慮したコホート解析により計算した。資源量は、1970・80年代には比較的安定していたが、1992~1996年に増加傾向を示した後、1997年に急減した。1998~2000年にかけてさらに減少し、2000~2007年は低い水準で横ばい傾向を示していた。しかし、2008年の高い加入量のため、資源量は2008年に急激に増加し、中位水準まで回復したと考えられる。2009年の資源量は前年よりもやや減少したものの、資源水準は中位で、動向は過去5年間(2005~2009年)の資源量の推移から増加と判断される。今後、再生産成功率(加入量÷親魚量)が最近19年(1990~2008年)の中央値で継続した場合に、それぞれの漁獲シナリオで期待される漁獲量を算定した。

	F値		将来》	魚獲量	評价	西	2011 年	
漁獲シナリオ	F 但 (Fcurrent	漁獲	き (千トン)		現状親魚	Blimit	漁期 ABC	
(管理基準)	との比較)	割合	5年	5年	量を維持	を維持	(手トン)	
	こくプロ教		後	平均	(5年後)	(5年後)	(11/2)	
親魚量の増大	0.50(0.64)	200/	307	000	1000/	1000/	244	
(F30%SPR) *	Fcurrent)	29%	~ 537	336	100%	100%	(117)	
現状の漁獲圧維持	0.78(1.00		206				329	
(Fcurrent) *	Fcurrent)	42%	~ 582	361	70%	73%	(158)	
現状の親魚量維持	0.87(1.11		169				350	
(Fmed) *	Fcurrent)	45%	~ 559	339	50%	53%	(168)	

コメント

- ・現状の漁獲圧(Fcurrent)は親魚量の現状維持を目指す Fmed よりも低い。
- ・本系群の ABC 算定には規則 1-1)を用いた。
- ・平成 18 年に設定された中期的管理方針では、大韓民国(韓国)等と我が国の水域にまたがって分布し、外国漁船によっても採捕が行われていて我が国のみの管理では限界があることから、関係国との協調した管理に向けて取り組みつつ、当面は資源を減少させないようにすることを基本に、我が国水域への来遊量の年変動も配慮しながら、管理を行うとされており、上記のすべてのシナリオはこれと合致する。
- ・若齢魚の漁獲回避が、親魚量増大に有効な方策と考えられる。

2011 年漁期は 2011 年 7 月~翌年 6 月。漁獲割合は 2011 年漁期漁獲量/資源量(資源量は 2011 年 1 月と 2012 年 1 月時点推定値の平均)。F 値は各年齢の平均。2011 年漁期 ABC および算定漁獲量()内は、我が国 EEZ 内の値。Fcurrent は 2007~2009年の Fの平均。将来漁獲量の幅は 80%区間。

年*	資源量(千トン)	漁獲量 (千トン)	F値	漁獲割合
2008	928	302 (100)	0.70	33%
2009	844	305 (129)	0.62	36%
2010	790	_	_	_

^{*}年は暦年($1\sim12$ 月)、2010 年の資源量は加入量を仮定した値。漁獲量() 内は我が 国 EEZ 内の値。

	指標	値	設定理由
Bban	未設定		
Blimit	親魚量	1997 年水準(247 千トン)	これ以下の親魚量だと、良好な加
			入量があまり期待できなくなる。
2009年	親魚量	1997年水準以上(318千トン)	

水準:中位 動向:増加

本件資源評価に使用したデータセットは以下のとおり

データセット	基礎情報、関係調査等
年齢別•年別漁獲尾数	漁業・養殖業生産統計年報 (農林水産省)
	主要港水揚量(青森~鹿児島(17)府県)
	九州主要港入り数別水揚量(水研セ)
	大中型まき網漁業漁獲成績報告書(水産庁)
	月別体長組成調査(水研セ、青森~鹿児島(17)府県)
	・市場測定
資源量指数	
・0 歳魚指標値	九州主要港入り数別水揚量 (水研セ)
	境港銘柄別水揚量(鳥取県)
	幼稚魚分布調査(水研セ、山口県、長崎県、鹿児島県)
	・ニューストンネット
	計量魚探による浮魚類魚群量調査(水研セ)
	・計量魚探、中層トロール
	資源量直接推定調査 (水研セ)
	・着底トロール
• 年齢別資源量指数	大中型まき網漁業漁獲成績報告書(水産庁)
自然死亡係数 (M)	年当たり M=0.4 を仮定(Limbong et al. 1988)

1. まえがき

対馬暖流域(東シナ海・黄海・日本海)のマサバはまき網漁業の重要資源で、東シナ海及び日本海で操業する大中型まき網漁業による漁獲量の 42%を占める(2009 年)。これまで浮魚資源に対する努力量管理が、大中型まき網漁業の漁場(海区制)内の許可隻数を制限するなどの形で行われてきた。さらに 1997 年から、ゴマサバとあわせてさば類として TAC (漁獲可能量) による資源管理が実施されている。

2. 生態

(1) 分布・回遊

分布は東シナ海南部から日本海北部、さらに黄海や渤海にも及ぶ(図 1)。春夏に索餌のために北上回遊を、秋冬に越冬・産卵のため南下回遊をする。日本海北部で越冬する群もある。

(2) 年齢·成長

成長は海域や年代等によってやや異なるが、ふ化後 1 年で尾叉長 $25\sim28$ cm、2 年で $29\sim32$ cm、3 年で $33\sim35$ cm、4 年で約 36cm、5 年で約 37cm に達する (Shiraishi et al. 2008、図 2)。寿命は 6 歳程度と考えられる。

(3) 成熟·産卵

産卵は東シナ海南部の中国沿岸から東シナ海中部、朝鮮半島沿岸、九州・山陰沿岸の広い海域で行われる。産卵期は南部ほど早く($1\sim4$ 月)、北部は遅い($5\sim6$ 月)傾向がある(Yukami et al. 2009)。成熟年齢は $1\sim2$ 歳で、1歳で産卵に参加する個体が60%、2歳では85%、3歳以上では100%と見積もっている(白石 未発表、図 3)。

(4) 被捕食関係

オキアミ類、アミ類、橈脚類などの浮遊性甲殻類とカタクチイワシなどの小型魚類 が主な餌料である。稚幼魚は魚食性の魚類に捕食されると考えられる。

3. 漁業の状況

(1) 漁業の概要

対馬暖流域のマサバのほとんどは、大中型まき網漁業及び中・小型まき網漁業で漁獲され、主漁場は東シナ海から韓国沿岸、九州北西岸・日本海西部海域である。

(2) 漁獲量の推移

統計上マサバとゴマサバは区別されず、さば類として一括されることが多いので、本報告では統計資料から独自に算定した漁獲量の値を使用する(補足資料 $2 \cdot 1 \cdot$ 補注 1、表 5)。東シナ海・黄海・日本海における我が国のマサバ漁獲量は、1970 年代後半には 27 万~30 万トンであったが、その後減少し、1990~1992 年には 13 万~15 万トンと大きく落ち込んだ(図 4)。1993 年以降、漁獲量は増加傾向を示し、1996 年には 41 万トンに達したが、1997 年には 21 万トンに大きく減少した。その後もさらに減少し、 $2000 \sim 2006$ 年は 90 千トン前後で推移していたが、2007 年には 106 千トン、2008 年には 121 千トン、2009 年には 131 千トンと緩やかな増加傾向を示している。韓国のさば類漁獲量は、2008 年には 190 千トン、2009 年には 175 千トンと近年、日本と同等か上回る値となっている(「漁業生産統計」韓国統計庁)。中国のさば類漁獲量は、1995 年以降、40 万トン前後で経過していて、2007 年には 34 万トン、2008 年には 59 万トンとなっている(FAO Fish statistics: Capture production $1950 \cdot 2008$ (Release date: February 2010))。韓国、中国のマサバとゴマサバの魚種別の漁獲量は不明である。

(3) 漁獲努力量

東シナ海・日本海西部で操業する大中型まき網の網数を示す(図 5)。網数は、1980年代後半に最大となったが、1990年以降は減少している。後述の有効漁獲努力量も1998年以降は減少傾向を示している(図 6)。

4. 資源の状態

(1) 資源評価の方法

漁獲量、漁獲努力量等の情報を収集し、漁獲物の生物測定結果とあわせて年齢別・ 年別漁獲尾数による資源解析を行った(補足資料 2-1)。資源計算は日本と韓国の漁獲 について行った。

新規加入量(0歳魚)を主対象として、 $2\sim6$ 月にニューストンネット等を用いた稚仔魚分布調査、 $5\sim6$ 月に着底トロール網による現存量推定調査、 $7\sim9$ 月にトロール網と計量魚探による魚群量調査を行った(補足資料 3)。

(2) 資源量指標値の推移

東シナ海・日本海西部で操業する大中型まき網の資源密度指数は、1991~1996年に増加傾向を示した後、1997~2001年にかけて減少した(図 6)。2002~2007年は緩やかな増加傾向を示していたが、2008年に急増し、2009年はさらに高い値を示した。有効漁獲努力量は、1994年までは同程度の水準を保っていたが、1995~1997年に大きく変動し、1998年以降は低い水準で減少傾向を示している(図 6)。資源密度指数は、緯経度 30分間隔で分けられた漁区のうち、2009年に操業が行われた漁区について、漁区ごとの一網当り漁獲量の総和をマサバの漁獲があった漁区数で割って求めた。有効漁獲努力量は、2009年に操業が行われた漁区の漁獲量を資源密度指数で割って求めた。

豆銘柄の漁獲状況から求めた 0 歳魚指標値(補足資料 2-1-補注 3) は、値が得られる 1998 年以降でみると、2000 年に低い値を示し、2008 年に高い値を示した他は、比較的安定して推移している(図 7)。

(3) 漁獲物の年齢組成

0歳魚と1歳魚が主に漁獲される(図8)。1990年代以降、全体の漁獲尾数に占める 0歳魚の割合が高まり、2歳魚以上の割合は低くなっている。

(4) 資源量と漁獲割合の推移

年齢別・年別漁獲尾数(補足資料 2-1)に基づき、コホート計算により求めた資源量は、1973~1989 年には 88 万~126 万トンで比較的安定していた(図 9)。1987 年の126 万トンから 1990 年の 64 万トンまで減少した後、増加傾向を示し、1993~1996年には 110 万~137 万トンの高い水準に達した。しかし 1997 年以降、資源は急激に減少し、2000年には 45 万トンにまで落ち込んだ。その後も低い水準で推移していたが、2008年は 93 万トンに急増し、2009年はやや減少したものの 84 万トンであった。漁獲割合は 1996年に急増し、1997年にやや減少したものの、その後は 2007年まで比較的高い水準で経過していたが、2008、2009年はやや低い値を示している(図 9)。

加入量(資源計算の0歳魚資源尾数)は、1995年にかなり高い値を示した後、1996、

1997年に急減し、その後も 2002年にかけて減少した(図 10)。2004年にはやや増加したものの、2005年は再び減少し、2006、2007年も低い値で推移した。2008年は急増し、近年ではかなり高い値となったが、2009年は再び低い値を示している。親魚量(資源計算の成熟魚資源量)は、1993~1996年に増加し高い水準に達したが、1997年に急減し、さらに 2003年まで減少傾向が続いた(図 10)。2004年の高い加入量により 2005年は増加し、その後は再び緩やかに減少していたが、2008年の高い加入量により 2009年は急増した。

コホート計算に使った自然死亡係数(M)の値は、信頼性が低く過小評価の可能性がある。M の値が資源計算に与える影響を見るために、M の値を変化させた場合の 2009年の資源量、親魚量、加入量を図 11 に示す。M の値が大きくなると、いずれの値も大きくなる。

漁獲係数 F (各年齢の F の単純平均) は、 $1973\sim1984$ 年に漸減した後、 $1985\sim1995$ 年まで漸増し、1996 年に急増した(図 12、有効漁獲努力量をあわせて図示)。1997、1998 年には減少したが、2000 年に再び増加した。その後は緩やかな減少傾向を示している。0 歳魚の F は、1990 年頃から増加傾向にあり、近年も高い水準を維持している(図 12)。有効漁獲努力量と F はほぼ同様の変動傾向を示しているが、1998 年以降、有効漁獲努力量が低い水準で減少傾向を示しているのにもかかわらず、近年の F が高い水準にあるのは、韓国の漁獲圧が 1990 年代後半から高くなっていることによる可能性がある。

資源量と Fの間に、はっきりした関係は見られない(図 13)。

(5) 資源の水準・動向

資源水準は、過去 37 年間 (1973~2009 年) の資源量の推移から中位、動向は、過去 5 年間 (2005~2009 年) の資源量が増加傾向にあることから、増加と判断する。

(6) 再生産関係

親魚量と加入量の間に、はっきりした関係はない(図 14a)。しかし、親魚量が少ない場合には高い加入量が出現しない傾向があり、1990年以降では親魚量と加入量の間に正の相関がある(図 14b、1%有意水準)。したがって、高い加入量を得るために親魚量を低い水準に低下させないことが望ましい。

(7) Blimit の設定

回復の閾値(Blimit)を検討する。親魚量と加入量の37年間の計算値のうちで、加入量の上位10%を示す直線と、再生産成功率の上位10%を示す直線の交点に当たる親魚量は27万トン程度である(図14a)。また、1990年以降の図では(図14b)、親魚量と加入量の間に正の相関があるので(20年、1%有意水準)、高い加入量を得るために、なるべく高い親魚量を確保することが望まれる。これらのことから、大きく資源

が減少した 1997 年の水準(25 万トン)を Blimit とすることが妥当であると判断する。

(8) 今後の加入量の見積もり

再生産成功率(加入量÷親魚量)は、(親魚量と産卵量に比例関係があるとして、)発生初期の生き残りの良さの指標値になると考えられる。再生産成功率は、1991年以降、比較的高い値を示しており、1995、2004、2008年にかなり高い値を示した(図15)。再生産成功率(の対数)と親魚量の間には負の相関があり(1%有意水準)、密度効果が働いている可能性がある(図16)。

再生産成功率の変動には、海洋環境が深く関わっていると考えられる。再生産成功率の対数と親魚量に直線関係を当てはめ、直線からの残差を水温と比較した(図 17)。その残差と東シナ海(北緯 29 度 30 分、東経 127 度 30 分)の 2 月の海面水温(気象庁保有データ)の間には、負の相関がある(図 17、1%有意水準)。水温に代表される海洋環境が、初期生残等に大きな影響を与えると想定されるが、詳細については不明な点が多く、今後の課題である。

1990年以降、親魚量と加入量の間に正の相関が見られ、直近年(2009年)の加入量計算値は不確実性が高いので、ABC の算定等においては、2010年以降の再生産成功率を1990~2008年の中央値6.6尾/kgと設定する。また、加入量に対する密度効果があると想定されることから、親魚量が35万トン以上では、加入量を親魚量35万トンと再生産成功率の積とする(再生産成功率の変動を考慮しない場合、加入量は23億尾で一定)。ただし、2010年の加入量は現在までの漁獲状況から判断してやや低いと考えられることから、2003~2009年の平均値(13億尾)を与えた。

2010 年の加入量を過大あるいは過小に見積もっていた場合、将来予測および ABC が変わる可能性があるので、今後の 2010 年級群の漁獲動向に十分留意する必要がある。

(9) 生物学的な漁獲係数の基準値と現状の漁獲圧の関係

年齢別選択率を一定($2005\sim2009$ 年平均)として F を変化させた場合の、加入量当り漁獲量(YPR)と加入量当り親魚量(SPR)を図 18 に示す。現状の F (Fcurrent)を年齢別選択率が $2005\sim2009$ 年の平均(0 歳=0.62、1 歳=1、2 歳=1.26、3 歳=1.26)で、各年齢の F の単純平均値が $2007\sim2009$ 年の平均値と同じ(0.78)である F とする(0 歳=0.47、1 歳=0.75、2 歳=0.95、3 歳=0.95)。Fcurrent は、F0.1、F30%SPRよりかなり高い。

5. 2011 年漁期 ABC の算定

(1) 資源評価のまとめ

資源量は、 $1970 \cdot 80$ 年代には比較的安定していたが、 $1992 \sim 1996$ 年に増加傾向を示した後、1997 年に急減した。 $1998 \sim 2000$ 年にかけてさらに減少し、 $2000 \sim 2007$

年は低い水準で横ばい傾向を示していた。2008年の高い加入量のため資源量は2008年に急増し、2009年は2008年よりやや減少したものの、中位水準にあると判断される。動向は過去5年間の資源量の推移から増加と判断される。親魚量も資源量とほぼ同様の変動傾向を示しており、2009年の親魚量はBlimitを上回っていると考えられ、この水準で親魚量を維持すれば特に問題はないと考えられる。

(2) 漁獲シナリオに対応した 2011 年漁期 ABC 並びに推定漁獲量の算定

設定した加入量の条件 (再生産成功率=1990~2008年の中央値 6.6 尾/kg、親魚量が 35 万トンを超えた場合は加入量 23 億尾で一定。2010年の加入量は 2003~2009年の平均値)のもとで、複数の漁獲シナリオに合わせて F を変化させた場合の推定漁獲量と資源量を示す。Fmed は、年齢別選択率が 2005~2009年の平均で、SPR が 151g ($1\div0.0066$ 尾/g) になる F (0 歳=0.52、1 歳=0.84、2 歳=1.06、3 歳=1.06)、F30%SPR は、親魚量の増大が期待できるシナリオとして、漁獲がない場合の 30%に相当する SSB/R を達成する F (0 歳=0.30、1 歳=0.48、2 歳=0.61、3 歳=0.61)とした。平成 20 年度から ABC を 7 月~翌年 6 月とする年漁期に対して計算することとなったため、将来予測においては、 $1\sim6$ 月と $7\sim12$ 月の半年を単位とするコホート計算を行った(補足資料 $2\cdot2$)。

海猫ミオリオ	公田甘淮		漁	獲量 (=	チトン、	年漁期)					
漁獲シナリオ	管理基準	2009	2010	2011	2012	2013	2014	2015				
親魚量の増大	F30%SPR (F=0.50)	289	307	244	305	376	405	422				
上記の予防的措置	0.8Frec (F=0.40)	289	307	207	277	342	376	393				
現状の漁獲圧維持	Fcurrent (F=0.78)	289	307	329	341	369	395	422				
上記の予防的措置	0.8Fcurrent (F=0.63)	289	307	286	329	406	429	446				
現状の親魚量維持	Fmed (F=0.87)	289	307	350	343	345	345	345				
上記の予防的措置	0.8Fmed (F=0.70)	289	307	306	336	391	434	450				
漁獲シナリオ	管理基準	資源量(千トン、年漁期)										
(思)後 ン ブ リ オ	百炷茶毕	2009	2010	2011	2012	2013	2014	2015				
親魚量の増大	F30%SPR (F=0.50)	817	811	923	1,127	1,301	1,391	1,433				
上記の予防的措置	0.8Frec (F=0.40)	817	811	950	1,194	1,392	1,502	1,555				
現状の漁獲圧維持	Fcurrent (F=0.78)	817	811	854	907	971	1,038	1,110				
上記の予防的措置	0.8Fcurrent (F=0.63)	817	811	890	1,050	1,202	1,278	1,311				
現状の親魚量維持	Fmed (F=0.87)	817	811	835	839	839	839	839				
上記の予防的措置	0.8Fmed (F=0.70)	817	811	874	984	1,113	1,205	1,247				

図 19、20 に図示、資源量は当該年1月と翌年1月時点推定値の平均。

(3) 加入量の不確実性を考慮した検討、シナリオの評価

再生産成功率の年変動が親魚量と漁獲量の動向に与える影響を見るために、2010~2021年の加入量を仮定値の周りで変動させ、Fcurrent(=Fave2007-2009)、Fmed、F30%SPR、0.8Fcurrent、0.8Fmed、0.8F30%SPRで漁獲を続けた場合の親魚量と漁獲量を暦年単位で計算した。2010年の加入量は、2003~2009年の加入量から重複を許して同じ確率でランダムに抽出した。2011年以降の加入量は、2011~2021年の再生産成功率を、1973~2008年の再生産成功率の平均値に対する各年の比率が同じ確率で現れて(重複を許してランダム抽出)、その比率に仮定値 6.6尾/kgを乗じたものであるとし、さらにその値に年々の親魚量を乗じたものであるとした。親魚量が 35万トンを超えた場合は、加入量を計算する際の親魚量は35万トンで一定とした。

1,000 回シミュレーションした結果を図 21 に示す。親魚量のシミュレーション結果を見ると、Fcurrent の場合、1,000 回の平均値では親魚量が僅かに増加したものの、下側 10%(下位 100 回)では、2021 年の親魚量が現在の半分程度になった。Fmed

の場合、1,000 回の平均値では親魚量が現状の値をほぼ維持したが、その値は Blimit を僅かに上回る程度であり、下側 10%(下位 100 回)では、2021 年の親魚量が現状の半分以下になった。F30%SPR の場合、平均値で親魚量が増加し、下側 10%でも親魚量が増加した。0.8Fcurrent の場合、平均値で親魚量が緩やかに増加し、下側 10%でも親魚量が僅かに増加した。0.8Fmed の場合、平均値で親魚量が緩やかに増加し、下側 10%でも現状の親魚量を維持した。0.8F30%SPR の場合、下側 10%でも親魚量が増加した。

漁獲量のシミュレーション結果を見ると、Fcurrent および Fmed の場合、平均値では漁獲量がほぼ現状を維持したものの、下側 10%ではかなり減少した。F30%SPR の場合、平均値で漁獲量が増加し、下側 10%では漁獲量が管理開始時に一時的に減少するものの、その後は増加した。0.8Fcurrent および 0.8Fmed の場合、平均値で漁獲量が緩やかに増加し、下側 10%では漁獲量が管理開始時に一時的に減少するものの、その後は緩やかに増加した。0.8F30%SPR の場合、平均値および下側 10%ともに、漁獲量が管理開始時に一時的に減少するものの、その後は増加した。

1,000 回シミュレーションの際、あわせて5 年後(2015 年)予想漁獲量の幅(上下10%の値を除いた80%区間)、5 年($2011\sim2015$ 年)平均漁獲量、5 年後(2016 年 1 月)に現状(2011 年)の親魚量を上回る確率、5 年後に100 Blimit を上回る確率を求めた。

5 年後予想漁獲量の幅は、すべてのシナリオにおいて、再生産成功率の変動の大きさを反映してかなり広くなった。上側の値は、現状の F を引き下げるほど高い値となる傾向にあるが、将来の加入量の条件のため、0.8Fcurrent 以下に引き下げても値の増加は見られなかった。下側の値は、F を引き下げるほど高い値となる傾向が見られた。

5 年平均漁獲量の値は、管理開始時に漁獲量が減少するため、F30%SPR 以下に F を引き下げても増加しなかったが、親魚量が 5 年後に現状の親魚量および Blimit を上回る確率は、F を引き下げるほど高くなった。

上記の検討より、資源量推定値などの不確実性を踏まえた予防的措置として、安全係数 0.8 を乗じた F 値による ABC が望ましい。

また Fmed の場合、5 年後に Blimit を上回る確率は 53%とあまり高くなく、このシナリオを選択した場合に再び Blimit を下回る可能性は高い。現状の親魚量は Blimit を上回っているものの、資源の増加が期待できるシナリオを選択し、Blimit を下回る可能性を低くすることが望まれる。

	F 値		将来》	魚獲量	評价	西	2011 年	
漁獲シナリオ	Fcurrent	漁獲	(千)	トン)	現状親魚	Blimit	漁期 ABC	
(管理基準)	との比較)	割合	5年	5年	量を維持	を維持	(千トン)	
	こりに扱う		後	平均	(5年後)	(5年後)		
親魚量の増大	0.50(0.64		307				244	
(F30%SPR)*	Fcurrent)	29%	\sim	336	100%	100%	(117)	
,	rearrent/		537				(117)	
親魚量の増大の	0.40(0.51		288				207	
予防的措置	Fcurrent)	23%	\sim	303	100%	100%	(99)	
(0.8 F30%SPR) *	rcurrent)		491				(00)	
現状の漁獲圧維持	0.78(1.00		206		70%		329	
(Fcurrent) *	Fcurrent)	42%	\sim	361		73%	(158)	
(FCurrent) *	rcurrent/		582				(100)	
現状の漁獲圧維	0.63(0.80		283				286	
持の予防的措置	Fcurrent)	35%	\sim	365	95%	96%	(137)	
(0.8Fcurrent) *	rcurrent)		554				(137)	
現状の親魚量維持	0.87(1.11		169				350	
デルジ統無重施列 (Fmed)*	Fcurrent)	45%	\sim	339	50%	53%	(168)	
(rinea) *	rcurrent)		559				(100)	
現状の親魚量維	0.70(0.89		250				206	
持の予防的措置		38%	\sim	371	87%	89%	306 (147)	
(0.8Fmed) *	Fcurrent)		582				(147)	

コメント

- ・当該資源に対する現状の漁獲圧は持続的である。
- ・本系群の ABC 算定には規則 1-1)を用いた。
- ・平成 18 年に設定された中期的管理方針では、大韓民国(韓国)等と我が国の水域にまたがって分布し、外国漁船によっても採捕が行われていて我が国のみの管理では限界があることから、関係国との協調した管理に向けて取り組みつつ、当面は資源を減少させないようにすることを基本に、我が国水域への来遊量の年変動も配慮しながら、管理を行うとされており、上記のすべてのシナリオはこれと合致する。
- ・若齢魚の漁獲回避が、親魚量増大に有効な方策と考えられる。
- ・不確実性を考慮して安全率 α を0.8とした。

2011 年漁期は 2011 年 7 月~翌年 6 月。漁獲割合は 2011 年漁期漁獲量/資源量(資源量は 2011 年 1 月と 2012 年 1 月時点推定値の平均)。F 値は各年齢の平均。2011 年漁期 ABC および算定漁獲量()内は、我が国 EEZ 内の値。F Current は 2007~2009年の F の平均。将来漁獲量の幅は 80%区間。

我が国 EEZ 内外への配分は、日本と韓国の漁獲実績(1999~2009 年)から求めた 総漁獲量に対する我が国 EEZ 内における漁獲量の比率のうちで、最も高い値(2006 年)を基にした。

(4) ABC の再評価

昨年度評価以降追加	修正・更新された数値
されたデータセット	
2008年漁獲量確定値	2008、2009 年年齢別漁獲尾数
2009 年漁獲量暫定値	
2009年月別体長組成	
2009年大中型まき網	2009年までの資源密度指数、2009年までの年齢別資源尾数
漁業漁獲成績報告書	(再生産関係)、漁獲係数(年齢別選択率)

評価対象年	公田甘淮	17. /击	資源量	ABClimit	ABCtarget	漁獲量
(当初・再評価)	管理基準	F値	(千トン)	(千トン)	(千トン)	(千トン)
2009年漁期(当初)	Fsus	0.92	520	223(107)	197(94)	
2009 年漁期 (2009 年再評価)	Fsus	0.80	676	270 (129)	242 (116)	
2009 年漁期	Fsus	0.87	799	320 (153)	279 (134)	289 (139)
(2010年再評価) 2010年漁期(当初)	Fmed	0.80	666	276(133)	242 (116)	
2010 年漁期 (2010 年再評価)	Fmed	0.87	792	326 (156)	286 (137)	
2009 2010年とも	TAC設定	の根拠	レなったこ	ナリオについ)て行った	

2009、2010 年とも、TAC 設定の根拠となったシナリオについて行った。 2009 年漁期漁獲量は推定値。ABC および漁獲量()内は我が国 EEZ 内の値。

2008 年の加入量が昨年度評価時よりも高かったことが主な要因となって、2010 年 再評価における資源量および ABC が、2009 年評価よりも高い値となった。

6. ABC 以外の管理方策の提言

対馬暖流域のマサバは、韓国、中国等によっても漁獲されるので、資源評価、資源 管理に当たっては各国間の協力が必要である。

若齢魚への漁獲圧を緩和することの効果を見るために、他年齢の F は Fcurrent (= Fave2007-2009) と同じで、0 歳魚の F のみを削減した場合の、2011~2015 年の漁獲量および親魚量の予測値を求めた。再生産成功率が 1990~2008 年の中央値で一定 (親魚量が 35 万トンを超えた場合は加入量 23 億尾で一定。2010 年の加入量は 2003~2009年の平均値) の条件のもとで期待される漁獲量は、削減率が大きいほど 2011年の漁獲量は減少するが、2013年には削減率にかかわらず同程度となった(図 22)。しかし、2014年以降の漁獲量は加入量の条件のため、削減率による差はあまり大きくなかった。一方、2015年の親魚量は削減率が大きいほど増加した。現在の親魚量は Blimitを上回っているものの、将来の加入量によっては親魚量が Blimitを下回る可能性も高いため、0 歳魚の漁獲を控えることにより、さらなる親魚量の増加を図ることも望まれる。

平成21年度から日本海西部・九州西海域マアジ(マサバ・マイワシ)資源回復計画が実施されている。

7. 引用文献

- Limbong, D., K. Hayashi and Y. Matsumiya (1988) Length cohort analysis of common mackerel *Scomber japonicus*, Tsushima Warm Current stock. Bull. Seikai Reg. Fish. Res. Lab., 66, 119-133.
- Shiraishi, T., K. Okamoto, M. Yoneda, T. Sakai, S. Ohshimo, S. Onoe, A. Yamaguchi and M. Matsuyama (2008) Age validation, growth and annual reproductive cycle of chub mackerel *Scomber japonicus* off the waters of northern Kyushu and in the East China Sea. Fish. Sci., 74, 947-954.
- Yukami, R., S. Oshimo, M. Yoda and Y. Hiyama (2009) Estimation of the spawning grounds of chub mackerel *Scomber japonicus* and spotted mackerel *Scomber australasicus* in the East China Sea based on catch statistics and biometric data. Fish. Sci., 75, 167-174.

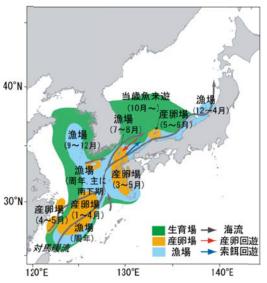


図 1. マサバ対馬暖流系 の分布・]遊 および生活史と漁場形成模式 |

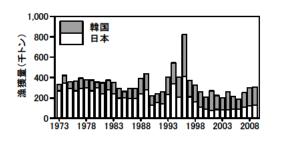


図 4. 漁獲

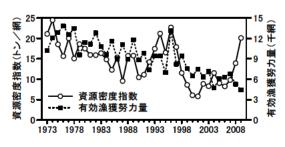


図 6. 大中型まき網の 源密度指 てと 有効漁獲努力量

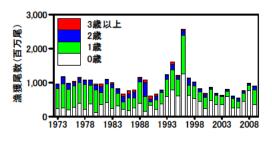


図 8. 年齢別・年 漁獲尾数

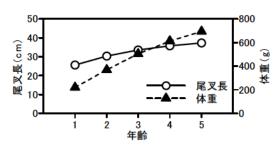


図2. 年齢と成長

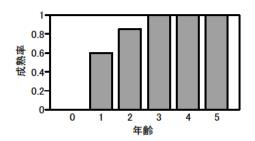


図3.年齢と成為率

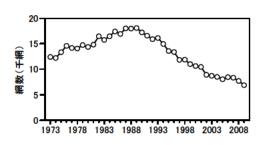
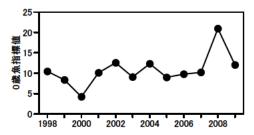



図 5. 大 型まき網の網数

引7. 豆銘 5による 0 歳魚指標値

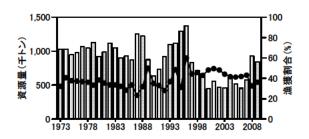
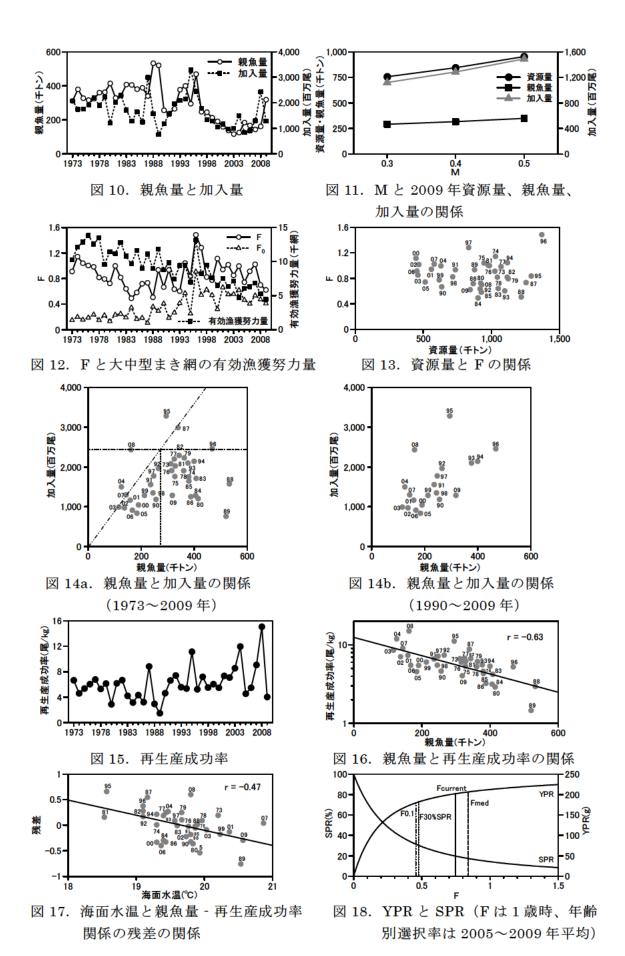



図 9. 資 章 (棒グラフ) と 漁 藝割合 (折 泉グラフ)

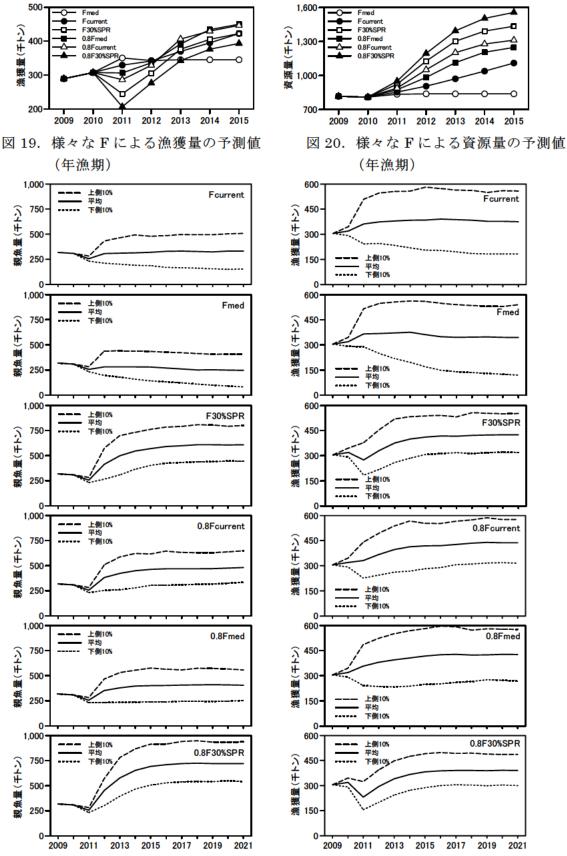


図 21. RPS の変動を考慮したシミュレーション結果 (暦年、左列:親魚量、右列:漁 獲量)

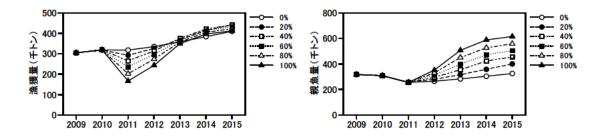
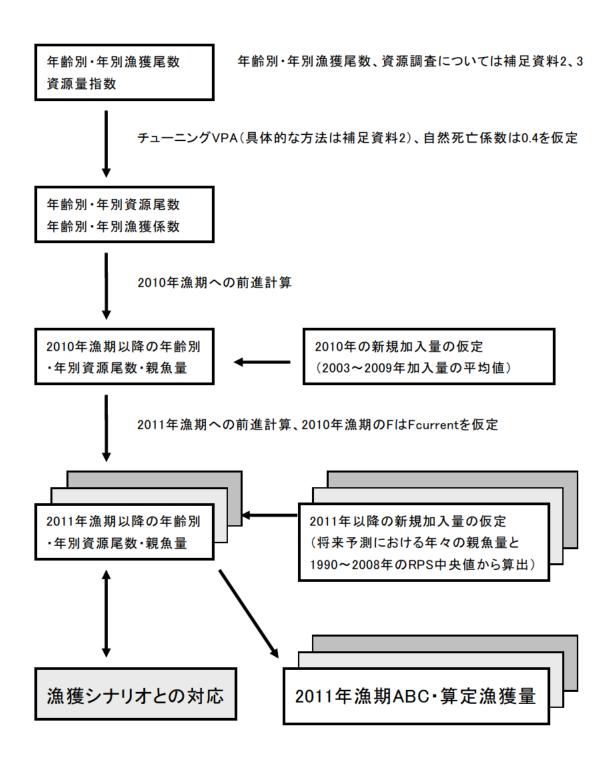



図 22. 0歳Fのみ削減した場合の漁獲量と親魚量の予測値(暦年)

補足資料1:資源評価の流れ

補足資料2

1. コホート計算

マサバの年齢別・年別漁獲尾数を推定し、コホート計算によって資源尾数を計算した。2009年の漁獲物平均尾叉長と体重、及び資源計算に用いた成熟率は以下のとおり。 年齢3+は3歳以上を表す。自然死亡係数Mは0.4と仮定した(Limbong et al. 1988)。

年齢	0	1	2	3+
尾叉長 (cm)	27.5	29.2	32.3	34.3
体重 (g)	288	346	475	571
成熟割合(%)	0	60	85	100

年齢別・年別漁獲尾数は、東シナ海・日本海における大中型まき網漁業の銘柄別漁獲量と九州主要港における入り数別漁獲量、及び沿岸域で漁獲されたマサバの体長組成から推定した(補注 2)。1973~2009年の年齢別・年別漁獲尾数(1月~12月を1年とする)を日本の漁獲量について推定し、日本+韓国の漁獲量で引き伸ばした。韓国のさば類漁獲量におけるマサバが占める割合は、日本の大中型まき網漁船の韓国水域内での割合(2009年はマサバが99.4%)と同じとした。中国の漁獲については考慮していない。

年齢別資源尾数の計算にはコホート計算を用い、最高年齢群3歳以上(3+)と2歳の各年の漁獲係数Fは等しいとした。

$$N_{a+1,y+1} = N_{a,y} \exp(-F_{a,y} - M)$$
 (1)

$$N_{3+,y+1} = N_{3+,y} \exp(-F_{3+,y} - M) + N_{2,y} \exp(-F_{2,y} - M)$$
 (2)

$$C_{a,y} = N_{a,y} \frac{F_{a,y}}{F_{a,y} + M} (1 - \exp(-F_{a,y} - M))$$
(3)

$$F_{3+,y} = F_{2,y} \tag{4}$$

ここで、N は資源尾数、C は漁獲尾数、a は年齢 (0~3+歳)、y は年。F の計算は、 平松 (内部資料) が示した、石岡・岸田 (1985) の反復式を使う方法によった (平成 22 年度マアジ対馬暖流系群の資源評価報告書補足資料 2-1-補注 2 参照)。最近年(2009 年) の 1、2 歳の F を、大中型まき網漁業の年齢別資源密度指数 (一網当り漁獲量の 有漁漁区平均、1~3+歳) 及び 0 歳魚指標値の変動傾向と、各年の年齢別資源量の変 動傾向が最も合うように決めた。合わせる期間は、マアジ対馬暖流系群、ゴマサバ東 シナ海系群と同じく 2003~2009 年とした。

最小
$$\sum_{a=1}^{3} \sum_{y=2003}^{2009} \left\{ \ln(q_{1,a}B_{a,y}) - \ln(CPUE_{a,y}) \right\}^2 + \sum_{y=2003}^{2009} \left\{ \ln(q_2B_{0,y}) - \ln(I_{0,y}) \right\}^2$$
 (5)

$$q_{1,a} = \left(\frac{\prod_{y=2003}^{2009} CPUE_{a,y}}{\prod_{y=2003}^{2009} B_{a,y}}\right)^{\frac{1}{7}}, q_2 = \left(\frac{\prod_{y=2003}^{2009} I_{0,y}}{\prod_{y=2003}^{2009} B_{0,y}}\right)^{\frac{1}{7}}$$
(6)

ここで、B は資源量、 I_0 は 0 歳魚の指標値(補注 3)、CPUE は大中型まき網漁業の 1 歳、2 歳と 3 歳以上に相当する銘柄の、 $1\sim5$ 月と $9\sim12$ 月について求めた年齢別資源密度指数。(5)式を最小化するような $F_{a,2009}$ を探索的に求めた結果、 $F_{0,2009}=0.41$ 、 $F_{1,2009}=0.70$ 、 $F_{2,2009}=0.69$ 、 $F_{3+,2009}=0.69$ と推定された。資源量は、各年齢の資源尾数に各年齢の漁獲物平均体重を掛け合わせて求めた。

年齢(銘柄)別資源密度指数(トン/網)

	2003	2004	2005	2006	2007	2008	2009
1歳	4.98	3.70	5.33	4.31	5.89	4.30	11.68
2 歳	1.85	2.60	2.13	2.23	1.56	3.79	3.93
3歳以上	1.28	0.94	0.64	1.36	0.98	1.04	1.41

補注 1. 漁獲量は以下のように算出した。大中型まき網の漁獲物についてはマサバとゴマサバの比率が報告されるので、東シナ海・日本海で漁獲されたマサバの漁獲量を対馬暖流系群の漁獲量とする。鹿児島県~秋田県の農林統計(属人)により、漁業種類別漁獲量のうち大中型まき網以外の漁業種類について加算する。その際、各府県のさば類漁獲量を府県ごとに割合を定めてマサバとゴマサバに振り分けた。マサバの割合を鹿児島県 20%、熊本県・長崎県 80%、佐賀県・福岡県 90%、山口県~福井県 95%、石川以北 100%とした(表 5)。

補注 2. 年齢別・年別漁獲尾数を以下のように推定した。1992~2009 年は、九州主要港に水揚げされる大中型まき網の漁獲物について、月ごとに定めた各年齢の入り数範囲により入り数別漁獲量から、九州の沿岸漁業及び日本海の漁獲物について、月ごとに定めた各年齢の体長範囲により体長測定データと漁獲量からそれぞれ月別に推定し、1~12 月分を足し合わせて年齢別漁獲尾数とした。1991 年以前については、1973~2007 年の大中型まき網の月別銘柄別漁獲量を各年齢に単純に割り振り、1992~2007年についての上記推定結果との各年齢の比率を求め、その1992~2007年の平均値を使って年齢別・年別漁獲尾数推定値を補正した。銘柄の年齢への振り分けは、7~12

月の豆銘柄を0歳、 $1\sim6$ 月の豆銘柄と $7\sim12$ 月の小銘柄を1歳、 $1\sim6$ 月の小銘柄と $7\sim12$ 月の中銘柄を2歳、 $1\sim6$ 月の中銘柄と全ての大銘柄を3+歳とした。

補注 3. 0 歳魚指標値はそれぞれ 11 月~翌年 1 月の九州主要港に水揚げされる大中型まき網の入り数 54 以上のマサバ漁獲量を正子位置報告数で割った値と、鳥取県境港サバ類豆銘柄まき網 1 か統当たり漁獲量の相乗平均値。昨年度は指標値を算出する期間を 10~12 月としていたため、昨年度から値が変更されている。

年	2003	2004	2005	2006	2007	2008	2009
0 歳魚指標値	9.07	12.32	9.01	9.79	10.20	20.91	12.02

2. ABC 算定方法

コホート計算は、産卵期と加入時期を考慮して、暦年($1\sim12$ 月)で計算している。 年漁期(7 月~翌年 6 月)ABC を計算するために、2009 年以降は半年(0.5 年)ごと に資源尾数と漁獲尾数を求め、2011 年漁期(2011 年 7 月~2012 年 6 月)に対応した ABC を算定した。

$$N_{a_2,y} = N_{a_1,y} \exp(-h_{a_1} F_{a,y} - \frac{M}{2})$$
 (7)

$$N_{a+1,y+1} = N_{a_2,y} \exp(-h_{a_2} F_{a,y} - \frac{M}{2})$$
(8)

$$N_{3+1,y} = N_{2,y} \exp(-h_{2,y} F_{2,y} - \frac{M}{2}) + N_{3+2,y} \exp(-h_{3+2} F_{3+y} - \frac{M}{2})$$
(9)

$$C_{a_1,y} = N_{a_1,y} \frac{h_{a_1} F_{a,y}}{h_{a_1} F_{a,y} + \frac{M}{2}} (1 - \exp(-h_{a_1} F_{a,y} - \frac{M}{2}))$$
(10)

$$C_{a_2,y} = N_{a_2,y} \frac{h_{a_2} F_{a,y}}{h_{a_2} F_{a,y} + \frac{M}{2}} (1 - \exp(-h_{a_2} F_{a,y} - \frac{M}{2}))$$
(11)

ここで、 a_1 は前期($1\sim6$ 月)、 a_2 は後期($7\sim12$ 月)、 h_a は年間の F の半年分の F への年齢別配分率。 h_a は $1\sim6$ 月と $7\sim12$ 月の年齢別漁獲尾数の $2007\sim2009$ 年の平均比率から求めた。漁獲量は、それぞれ前期、後期の各年齢の漁獲尾数に各年齢の漁獲物平均体重($2007\sim2009$ 年の平均)を掛け合わせて求めた。なお、半期ごとの漁獲物平均体重は、暦年計算と半年計算の年間漁獲量のずれが小さくなるように補正したものを用いた。

表 1. マサバ対馬暖流系群のコホート計算(暦年)

	滇	魚獲尾	数		Š	漁獲重量		漁獲係数 F			資源尾数						
年\	(百万月	킽)			(千)	・ン)		信息					(百万尾)			
年齢	0	1	2	3+	0	1	2	3+	0	1		2	3+	0	1	2	3+
1973	240	598	97	19	64	208	46	12	0.15	1.0)3	1.23	1.23	2,078	1,089	160	31
1974	267	706	179	26	71	245	86	17	0.20	1.1	L 7	1.60	1.60	1,749	1,199	259	37
1975	211	590	161	26	56	205	77	17	0.16	1.2	27	1.37	1.37	1,759	957	250	40
1976	275	626	112	31	73	217	54	20	0.19	1.2	28	1.28	1.28	1,911	1,008	181	49
1977	389	624	116	27	103	217	55	17	0.24	1.1	17	1.27	1.27	2,202	1,059	188	43
1978	222	720	113	22	59	250	54	14	0.15	1.2	28	0.92	0.92	1,906	1,162	221	44
1979	376	552	119	39	100	192	57	25	0.23	0.8	90	1.03	1.03	2,229	1,098	217	71
1980	124	660	146	34	33	229	70	22	0.13	1.0)5	0.86	0.86	1,203	1,191	299	69
1981	352	350	184	69	94	122	88	45	0.23	0.8	38	1.44	1.44	2,026	706	280	105
1982	424	539	110	34	113	187	5 3	22	0.25	0.9	90	1.06	1.06	2,295	1,074	197	61
1983	249	594	130	27	66	206	63	17	0.19	0.8	38	0.75	0.75	1,714	1,197	294	60
1984	313	379	109	37	83	132	52	24	0.35	0.6	34	0.50	0.50	1,283	947	333	112
1985	212	230	153	83	56	80	73	54	0.17	0.6	30	0.78	0.78	1,647	609	333	182
1986	177	369	123	86	47	128	59	56	0.19	0.6	34	1.03	1.03	1,252	932	224	158
1987	252	296	185	51	67	103	89	33	0.11	0.7	70	1.07	1.07	2,992	697	331	92
1988	399	631	84	35	106	219	40	23	0.36	0.5	54	0.57	0.57	1,576	1,802	232	97
1989	162	433	409	73	43	151	196	47	0.30	1.1	L 7	1.14	1.14	762	736	703	125
1990	332	109	79	91	88	38	38	59	0.41	0.4	12	0.92	0.92	1,187	380	154	178
1991	219	282	104	55	58	98	50	35	0.19	0.8	99	1.29	1.29	1,559	529	167	88
1992	385	317	64	23	102	110	31	15	0.27	0.5	57	0.85	0.85	1,963	868	132	47
1993	595	509	117	18	158	177	56	12	0.41	0.8	91	0.55	0.55	2,100	1,006	329	52
1994	786	587	158	86	209	204	76	55	0.57	1.5	32	1.14	1.14	2,145	930	272	147
1995	611	477	87	47	162	166	42	30	0.25	1.1	16	0.96	0.96	3,287	811	166	90
1996	1,2461	,154	122	47	331	401	59	30	0.91	1.5	51	1.75	1.75	2,456	1,711	170	65
1997	626	305	187	20	169	103	84	12	0.55	0.7	79	1.90	1.90	1,775	663	252	27
1998	527	379	96	13	140	133	46	8	0.62	1.0)4	0.82	0.82	1,349	689	202	28
1999	452	276	71	30	114	97	35	19	0.54	1.1	10	0.73	0.73	1,286	484	164	68
2000	241	333	68	48	42	111	33	29	0.32	1.4	17	1.33	1.33	1,046	501	107	75
2001	476	336	37	15	132	116	17	11	0.66	1.4	16	0.83	0.83	1,166	507	77	32
2002	348	285	40	16	96	99	19	11	0.55	1.6	88	0.92	0.92	972	402	79	32
2003	356	230	23	14	104	79	11	9	0.56	1.2	26	0.80	0.80	998	374	50	30
2004	584	164	45	15	172	59	20							1,501	381	71	24
2005	262	280	58	8	75	103	29	5	0.47	0.9	94	0.78	0.78	838	541	126	17
2006	255	188	82	25	63	66	44	17	0.41	0.8	99	1.13	1.13	914	352	142	44
2007	454	231	5 3	24	131	78	25	16	0.54	1.0	9	1.23	1.23	1,303	408	88	40
2008	771	149	48	13	218	52	23	9	0.48	0.4	13	0.95	0.95	2,434	511	92	25
2009	363	429	94	13	104	149	45	7	0.41	0.7	70	0.69	0.69	1,285	1,014	223	30

表 2. 漁獲量とコホート計算結果

衣 2. 伤				て 2. 侃漫里とコルート 計昇 桁末									
暦年	漁獲	量(千)		資源量	親魚量	加入量	漁獲割合	再生産成功率					
ла T	日本	韓国	計	(千トン)	(千トン)	(百万尾)	(%)	(尾/kg)					
1973	269	61	330	1,026	312	2,078	32	6.667					
1974	347	72	419	1,029	380	1,749	41	4.608					
1975	290	65	355	946	327	1,759	38	5.373					
1976	269	95	364	976	316	1,911	37	6.052					
1977	292	101	393	1,070	325	2,202	37	6.777					
1978	298	79	378	1,044	360	1,906	36	5.286					
1979	270	104	374	1,123	363	2,229	33	6.144					
1980	297	57	354	921	415	1,203	38	2.900					
1981	244	105	348	985	329	2,026	35	6.162					
1982	281	93	374	1,116	343	$2,\!295$	34	6.684					
1983	242	110	352	1,050	408	1,714	34	4.202					
1984	198	93	291	902	406	1,283	32	3.163					
1985	204	60	264	926	380	1,647	28	4.332					
1986	193	97	290	866	388	1,252	33	3.229					
1987	194	98	292	1,255	339	2,992	23	8.816					
1988	240	149	389	1,219	533	1,576	32	2.957					
1989	283	154	437	876	521	762	50	1.463					
1990	131	91	222	636	256	1,187	35	4.631					
1991	153	89	242	735	236	1,559	33	6.616					
1992	143	114	258	917	265	1,963	28	7.397					
1993	235	168	403	1,098	377	2,100	37	5.570					
1994	339	205	544	1,118	400	2,145	49	5.366					
1995	208	192	400	1,292	295	3,287	31	11.152					
1996	411	410	821	1,370	468	2,456	60	5.247					
1997	211	158	368	832	247	1,775	44	7.183					
1998	165	163	328	715	245	1,349	46	5.507					
1999	108	157	265	617	213	1,286	43	6.048					
2000	89	126	215	446	190	1,046	48	5.490					
2001	78	199	277	559	159	1,166	50	7.341					
2002	86	139	225	467	137	972	48	7.077					
2003	83	119	202	460	116	993	44	8.549					
2004	83	178	262	629	126	1,501	42	11.937					
2005	92	120	212	513	184	838	41	4.547					
2006	91	99	189	453	167	914	42	5.474					
2007	106	143	249	580	144	1,303	43	9.065					
2008	121	181	302	928	162	2,434	33	15.046					
2009	131	174	305	844	318	1,285	36	4.041					

表 3. 0歳魚の漁獲係数削減の効果(暦年)

削	削減率		20%	40%	60%	80%	100%
	0 歳	0.47	0.37	0.28	0.19	0.09	0.00
T.	1 歳	0.75	0.75	0.75	0.75	0.75	0.75
F	2 歳	0.95	0.95	0.95	0.95	0.95	0.95
	3歳以上	0.95	0.95	0.95	0.95	0.95	0.95
2015 年漁獲量(千トン)		410	443	441	432	422	412
2015 年親魚	魚量(千トン)	325	401	457	505	558	616

表 4. 2010年以降の資源尾数等(暦年)

Fcurrent (=Fave2007-2009)、Fmed、F30%SPR で漁獲した場合の 2010~2015 年の年齢別漁獲係数、資源尾数、資源量、親魚量、漁獲尾数、漁獲量。体重 (g) は、0歳=286、1歳=344、2歳=479、3歳以上=624 (2007~2009 年平均体重)。

Fcurrent

年齢別漁獲係数

年齢\年	2010	2011	2012	2013	2014	2015
0 歳	0.47	0.47	0.47	0.47	0.47	0.47
1歳	0.75	0.75	0.75	0.75	0.75	0.75
2 歳	0.95	0.95	0.95	0.95	0.95	0.95
3歳以上	0.95	0.95	0.95	0.95	0.95	0.95
平均	0.78	0.78	0.78	0.78	0.78	0.78

年齢別資源尾数(百万尾)

1 11/44/21	77.7 - 22.7	(
年齢\年	2010	2011	2012	2013	2014	2015
0 歳	1,324	1,696	1,753	1,877	2,009	2,148
1歳	571	556	712	736	788	843
2 歳	339	180	175	224	232	248
3歳以上	85	109	75	65	75	79
計	2,319	2,541	2,715	2,901	3,104	3,319

年齢別資源量(千トン)

1 11/21	v <u> </u>	1 + /				
年齢\年	2010	2011	2012	2013	2014	2015
0 歳	379	485	501	537	575	614
1歳	196	191	245	253	271	290
2 歳	162	86	84	107	111	119
3歳以上	5 3	68	47	40	47	49
資源量	790	831	877	938	1,004	1,073
親魚量	309	256	265	284	304	325

年齡別漁獲尾数(百万尾)

1 1 1 7 4 1 1 1 1 4 2	1 11/4 11/11/2/									
年齢\年	2010	2011	2012	2013	2014	2015				
0 歳	414	531	549	587	629	672				
1歳	255	249	318	329	352	377				
2 歳	177	94	92	117	121	130				
3歳以上	44	57	39	34	39	41				
計	891	931	998	1,067	1,141	1,221				

年齢別漁獲量(千トン)

年齢\年	2010	2011	2012	2013	2014	2015
0 歳	119	152	157	168	180	192
1 歳	88	86	110	113	121	130
2 歳	85	45	44	56	58	62
3歳以上	28	36	24	21	24	26
計	319	318	335	358	384	410

Fmed 年齢別漁獲係数

年齢\年	2010	2011	2012	2013	2014	2015
0 歳	0.47	0.52	0.52	0.52	0.52	0.52
1歳	0.75	0.84	0.84	0.84	0.84	0.84
2 歳	0.95	1.06	1.06	1.06	1.06	1.06
3歳以上	0.95	1.06	1.06	1.06	1.06	1.06
平均	0.78	0.87	0.87	0.87	0.87	0.87

年齢別資源尾数(百万尾)

年齢\年	2010	2011	2012	2013	2014	2015
0 歳	1,324	1,696	1,635	1,638	1,640	1,640
1歳	571	556	676	652	653	654
2 歳	339	180	161	196	189	189
3歳以上	85	109	67	5 3	58	57
計	2,319	2,541	2,540	2,539	2,540	2,540

年齢別資源量(千トン)

年齢\年	2010	2011	2012	2013	2014	2015
0 歳	379	485	468	468	469	469
1歳	196	191	233	224	225	225
2 歳	162	86	77	94	91	91
3歳以上	5 3	68	42	33	36	36
資源量	790	831	820	820	820	821
親魚量	309	256	247	248	248	248

年齡別漁獲尾数(百万尾)

	, , , , , , , , , , , , , , , , , , , ,									
年齢\年	2010	2011	2012	2013	2014	2015				
0 歳	414	577	556	557	558	558				
1歳	255	267	325	313	314	314				
2 歳	177	100	90	109	105	106				
3歳以上	44	61	37	30	32	32				
計	891	1,005	1,008	1,009	1,009	1,009				

年齢別漁獲量(千トン)

年齢\年	2010	2011	2012	2013	2014	2015
0 歳	119	165	159	159	160	159
1歳	88	92	112	108	108	108
2 歳	85	48	43	52	50	51
3歳以上	28	38	23	18	20	20
計	319	343	337	338	338	338

F30%SPR

年齢別漁獲係数

年齢\年	2010	2011	2012	2013	2014	2015
0 歳	0.47	0.30	0.30	0.30	0.30	0.30
1歳	0.75	0.48	0.48	0.48	0.48	0.48
2 歳	0.95	0.61	0.61	0.61	0.61	0.61
3歳以上	0.95	0.61	0.61	0.61	0.61	0.61
平均	0.78	0.50	0.50	0.50	0.50	0.50

年齡別資源尾数(百万尾)

年齢\年	2010	2011	2012	2013	2014	2015
0 歳	1,324	1,696	2,210	2,316	2,316	2,316
1歳	571	556	844	1,100	1,152	1,152
2 歳	339	180	231	350	456	478
3歳以上	85	109	106	123	173	230
計	2,319	2,541	3,390	3,888	4,097	4,176

年齢別資源量(千トン)

年齢\年	2010	2011	2012	2013	2014	2015
0 歳	379	485	632	662	662	662
1歳	196	191	290	379	397	397
2 歳	162	86	110	168	218	229
3歳以上	5 3	68	66	77	108	143
資源量	790	831	1,099	1,285	1,385	1,431
親魚量	309	256	334	446	531	576

年齡別漁獲尾数(百万尾)

年齢\年	2010	2011	2012	2013	2014	2015
0 歳	414	364	474	497	497	497
1歳	255	177	269	351	368	368
2 歳	177	69	88	134	175	183
3歳以上	44	42	40	47	66	88
計	891	652	872	1,029	1,105	1,135

年齢別漁獲量(千トン)

年齢\年	2010	2011	2012	2013	2014	2015
0 歳	119	104	136	142	142	142
1歳	88	61	93	121	127	127
2 歳	85	33	42	64	84	88
3歳以上	28	26	25	29	41	55
計	319	224	296	356	394	411

表 5. 大中型まき網のマサバ漁獲量と、大中型まき網以外の漁業種の府県別マサバ漁獲量 (トン)

	大中まき	鹿児島	熊本	長崎	佐賀	福岡	山口	島根	鳥取
1973	215,160	966	942	2,414	34	764	1,911	38,598	9
1974	295,856	746	575	1,716	17	676	2,821	33,423	487
1975	237,859	1,361	828	2,132	14	662	1,619	38,432	212
1976	215,601	1,789	889	2,138	24	332	772	36,709	868
1977	250,593	1,749	863	3,647	41	674	1,338	21,241	247
1978	257,417	959	1,197	9,622	51	648	587	18,498	262
1979	212,769	2,542	1,093	7,102	106	705	1,069	38,385	118
1980	255,753	2,100	623	4,595	84	617	1,378	25,388	171
1981	203,333	2,740	2,106	7,098	140	549	1,477	19,952	260
1982	233,390	2,848	2,883	6,753	182	1,016	2,094	25,179	630
1983	197,112	2,863	1,268	5,590	266	1,440	2,235	24,158	377
1984	150,995	2,952	1,308	5,063	77	789	2,150	28,426	24
1985	152,021	3,853	2,784	12,803	42	743	2,957	21,189	233
1986	144,646	2,082	551	4,902	107	1,060	1,778	30,167	893
1987	124,383	2,307	2,358	25,887	370	1,623	2,863	25,006	266
1988	158,964	1,782	1,050	10,914	316	1,409	3,738	52,260	255
1989	213,583	1,524	1,019	7,711	613	1,625	1,485	47,890	13
1990	104,467	696	254	3,490	75	798	4,035	14,554	21
1991	111,700	867	1,454	4,227	65	571	6,687	25,152	3
1992	111,697	1,208	1,242	4,849	163	883	3,639	17,885	0
1993	175,995	2,240	1,457	10,058	489	3,518	3,202	33,375	5
1994	265,917	1,143	610	8,742	452	2,453	5,394	44,236	6
1995	154,712	1,051	1,933	9,467	187	1,483	5,683	28,748	2
1996	358,199	1,742	2,106	9,232	149	1,814	5,244	26,246	0
1997	173,610	2,297	2,748	11,288	275	786	3,900	12,204	11
1998	125,813	1,137	472	7,321	152	1,194	6,260	18,756	11
1999	79,681	1,372	671	8,745	149	1,373	2,713	10,555	12
2000	65,284	1,400	286	6,046	70	519	4,649	7,797	9
2001	54,132	1,157	50	7,580	145	1,142	3,602	7,824	8
2002	62,323	345	76	7,822	25	988	3,360	9,877	5
2003	62,440	1,135	7	8,046	11	1,177	939	7,850	0
2004	58,008	959	131	14,251	37	953	319	6,648	0
2005	61,858	2,331	117	10,843	20	879	928	10,252	1
2006	55,971	2,326	125	13,799	231	962	1,579	11,929	12
2007	71,649	1,771	282	12,065	51	2,353	1,728	13,451	2
2008	82,358	2,793	313	13,478	146	743	1,606	16,412	4
2009	92,412	1,740	59	14,435	13	579	2,005	17,123	5

表 5. 続き

	兵庫	京都	福井	石川	富山	新潟	山形	秋田	合計
1973	340	1,235	2,252	1,254	539	2,039	10	84	268,551
1974	1,486	477	2,520	3,172	1,205	1,500	6	144	346,826
1975	279	130	1,937	1,916	519	1,881	5	147	289,932
1976	678	169	2,070	3,356	1,120	2,041	2	227	268,787
1977	1,725	80	1,481	3,646	1,689	2,494	9	233	291,750
1978	1,676	61	979	3,415	1,419	1,495	0	153	298,439
1979	377	503	1,235	1,816	465	1,225	7	352	269,867
1980	43	295	894	2,492	1,000	1,446	7	215	297,101
1981	650	153	903	2,665	1,010	405	1	101	243,544
1982	1,772	95	791	2,579	402	603	1	140	281,358
1983	942	97	2,045	2,406	330	1,054	3	79	242,265
1984	557	106	1,504	2,224	239	905	6	204	197,530
1985	393	333	2,199	2,988	223	799	11	98	203,670
1986	383	93	1,164	3,382	465	1,059	15	110	192,858
1987	722	100	1,984	4,920	207	622	5	78	193,701
1988	369	140	2,179	5,408	316	838	4	102	240,043
1989	474	692	1,340	3,678	216	638	7	73	282,580
1990	187	301	494	1,510	134	184	0	29	131,228
1991	69	146	390	1,233	172	216	0	37	152,991
1992	70	120	190	1,047	230	140	0	24	143,385
1993	76	447	835	1,916	665	249	2	26	$234,\!555$
1994	746	632	1,334	5,180	1,357	498	3	50	338,751
1995	373	388	478	2,237	1,039	250	0	48	208,078
1996	283	298	516	4,255	764	335	2	31	411,217
1997	54	409	405	1,802	509	280	5	37	210,618
1998	10	472	183	1,257	1,306	144	4	32	164,524
1999	167	294	409	564	842	337	3	34	107,839
2000	113	409	265	1,028	1,134	178	1	59	89,249
2001	2	202	147	990	319	144	1	68	77,514
2002	6	276	151	630	117	85	1	33	86,121
2003	24	363	164	765	192	102	0	4	83,219
2004	2	180	51	1,144	525	112	6	51	83,377
2005	81	88	146	3,665	390	193	7	70	91,870
2006	35	1,399	602	878	348	232	27	58	90,514
2007	10	348	258	1,714	310	338	11	43	106,384
2008	57	279	188	1,316	764	545	16	53	121,073
2009	16	306	142	984	365	344	5	44	130,576

補足資料3

調査船調査

(1) 夏季(7~9 月) に九州西岸と対馬東海域で行った計量魚探による浮魚類魚群量調査の現存量指標値を以下に示す。マサバとゴマサバをあわせたさば類としての値である。

年	1997	1998	1999	2000	2001	2002	2003
さば類	0.2	2.2	1.6	0.9	0.3	0.3	0.05
年	2004	2005	2006	2007	2008	2009	
さば類	1.0	2.7	1.7	0.9	8.3	0.8	

(2) 5~6 月に東シナ海陸棚縁辺部で行った着底トロールを用いた資源量直接推定調査による、0歳魚を主体とする現存量推定値を以下に示す(調査海域面積 138 千 km²、漁獲効率を 1 とした計算。単位はトン)。なお、本調査は底魚類を対象としたものであり、マサバの分布水深を網羅していないので、得られる現存量推定値は参考程度のものとなる。

年	2000	2001	2002	2003	2004	2005
マサバ	26,100	14,513	4,951	2,715	3,645	1,062
年	2006	2007	2008	2009	2010	
マサバ	9,363	213	22,479	515	12,553	

(3) 2000 年からニューストンネット等を用いた新規加入量調査(幼稚魚分布調査) を 2~6 月に東シナ海及び九州沿岸海域で行っている。結果については平成 22 年度マ アジ対馬暖流系群の資源評価報告書補足資料 3(4) を参照。

引用文献

石岡清英・岸田 達 (1985) コホート解析に用いる漁獲方程式の解法とその精度の検 討. 南西水研報, 19,111-120.

Limbong, D., K. Hayashi and Y. Matsumiya (1988) Length cohort analysis of common mackerel *Scomber japonicus*, Tsushima Warm Current stock. Bull. Seikai Reg. Fish. Res. Lab., 66, 119-133.