平成22年度ヤリイカ対馬暖流系群の資源評価

責任担当水研:日本海区水産研究所(田 永軍)

参 画 機 関: 西海区水産研究所、地方独立行政法人青森県産業技術センター水産

総合研究所、秋田県農林水産技術センター水産振興センター、山形県水産試験場、新潟県水産海洋研究所、富山県農林水産総合技術センター水産研究所、石川県水産総合センター、福井県水産試験場、京都府農林水産技術センター海洋センター、兵庫県立農林水産技術総合センター但馬水産技術センター、鳥取県水産試験場、島根県水産技術センター、山口県水産研究センター

要約

ヤリイカ対馬暖流系群は1970年代に日本海西部海域で2そうびき沖合底びき網漁業によって10,000トン以上の漁獲があったが、現在日本海西部海域での漁獲は少なくなっており、分布の中心は北部日本海から津軽海峡付近にある。2そうびき沖合底びき網による日本海西部の2009年の資源密度指数は8.3で、1977年の4.9%に過ぎず、西部の資源水準が低く、横ばいであることを示している。一方、北部の漁獲量の大半を占める青森県の漁獲量は1986~1999年に増加したが、2000年以降は2004年まで減少傾向を示し、2005~2008年に緩やかに増加したものの、2009年は前年より大きく減少した。2009年における対馬暖流系全体の漁獲量は2,100トンで前年より大きく減少した。対馬暖流系全体として、資源水準は低位、資源動向は横ばいと判断した。定置網が漁獲の主体である漁業の実態及び水温の中長期的変動等環境の影響も見られたため、 δ_3 を0.8として下のようにABCを算出した。

	2011年ABC(百トン) 資源管理基準	F値	漁獲割合
ABClimit	28	0.8Cave3-yr	_	_
ABCtarget	22	0.8 • 0.8Cave3-yr	_	

100トン未満を四捨五入。

年	資源量(トン)	漁獲量(百トン)	F値	漁獲割合
2008	_	39	_	_
2009	_	21	_	_
2010	_	_	_	_

漁獲量は山口~北海道の合計値、100トン未満を四捨五入。

水準:低位 動向:横ばい

本件資源評価に使用したデータセットは以下のとおり

データセット	基礎情報、関係調査等
漁獲量	主要港水揚量(北海道〜山口の13道府県) 日本海沖合底びき網漁獲成績報告書(水産庁)
資源量指数	日本海沖合底びき網漁獲成績報告書(水産庁)

1. まえがき

近年の我が国のイカ類の漁獲量のうちヤリイカの占める割合は2%前後と推定されるが、漁獲量の大半を占めるスルメイカやアカイカに比べて単価が高く、底びき網、底建網、定置網、棒受網や釣りなど多くの漁業で漁獲され、本種の資源動向が漁業経営に与える影響は大きい。日本海側での漁獲量は減少傾向が認められ、近年の漁獲量は太平洋側の漁獲量とほぼ同程度の水準である。

2. 生態

(1) 分布·回遊

ヤリイカは北海道東部海域を除く日本周辺に広く分布する(図1)。スルメイカやアカイカと比較すると沿岸性が強く、大規模な回遊を行わずに産卵場と索餌場を往復する深浅移動が中心と考えられている。夏から秋には主に100~200m水深帯の大陸棚上に分布し索餌する。日本海においては標識放流調査によって日本海北部海域内での交流は認められているが、日本海西部との関係は明らかになっていない。

(2) 年齢·成長

ヤリイカは寿命が1年の単年性である。雄は雌に比べて最大体長が大きくなり、雌では外套背長220mm前後で停滞するのに対して、雄では300mmに成長する(図2、通山1987、木下1989)。

(3) 成熟·産卵生態

単年性であるため産卵されて約1年後の冬~春にかけて成熟・産卵する。本州日本海側では1~5月(2~3月中心)に、北海道海域ではこれより遅く、5~7月に産卵期を迎える。産卵場は沿岸の岩礁域や沖の瀬などに形成され、数十個の卵が入ったゼラチン質状の卵嚢が、岩棚などに房状に産み付けられる。このような産卵場が日本海沿岸、少なくとも山口県から北海道宗谷地方にかけて確認されている(伊藤2002)。

(4) 被捕食関係

ヤリイカに対する捕食者は明らかとなっていない。餌料生物としては、魚類、イカ類、端脚類、オキアミ及び浮遊性甲殻類などを捕食する。

3. 漁業の状況

(1) 漁業の概要

陸棚の発達する日本海西部海域では沿岸から沖合にかけて広範囲に分布し、各種 底びき網漁業、イカ釣り漁業、定置網漁業により漁獲される。盛漁期は10~3月で 産卵群を中心に漁業が行われる。日本海北部では定置網の漁獲量が底びき網よりも 多く、西部海域と同様に産卵群を主対象とした漁業が行われる。

(2) 漁獲量の推移

1990年以降における府県別漁獲量を表1に示した。

日本海西部海域(山口県~福井県)では、以前は山口県および島根県を中心とする2そうびき沖合底びき網漁業およびイカ釣り漁業によって多獲され、2そうびき沖合

底びき網漁業による漁獲量の最大値は1977年の13,700トンで(表2)、1970年代後半~1980年代前半には2そうびき沖合底びき網漁業の漁獲対象魚種の中で単一種として最も漁獲量の多い種であった(Tian, 2007)。しかしその後減少を続け、2003年には約16トンに激減した。2004年以降も低い値に止まり、2009年の漁獲量は47トンで最盛期の僅か0.3%にすぎない。日本海西部海域の漁獲量も2002年の約230トンまで減少したが、2003年以降緩やかな増加傾向を示しているものの、中長期的には低い水準にある(表1)。2009年の西部海域の漁獲量が318トンで、福井県と兵庫県以外、特に鳥取県の漁獲量は前年より大きく減少した。

一方、日本海北部海域(石川県〜北海道)で最も漁獲量の多い青森県の漁獲量は、1970年代の終わりから1980年代の中頃までは日本海西部海域の沖合底びき網漁業と同様に減少したが、その後1990年代には概ね増加傾向を示した(表2、図3)。2003年の漁獲量は1990年代後半の高水準を記録したものの、2000年以降は漁獲量は減少傾向が見られ、2004年に1,240トンまでに落ち込んだ。2005~2008年に増加傾向示したが、2009年の漁獲量は1,100トンと前年の半分に大きく減少した。なお、2009年の対馬暖流系全体としての漁獲量は約2,100トンと推定され、前年の3,900トンより大きく減少した(表1)。

4. 資源の状態

(1) 資源評価の方法

ヤリイカは農林統計の全国集計対象種になっていないため公式統計がない地域が存在する。また漁業種類によって漁獲努力量が把握されていないため、全体的にCPUEを算出することができない。したがって、日本海西部海域では2そうびき沖合底びき網漁業の漁獲量と有漁漁区数の変化を考慮した資源密度指数を、北部海域では漁獲量が多く統計が古くから整備されている青森県の漁獲量の経年変化をそれぞれ指標として用いた。なお、青森県について、定置網の経営体数の集計からCPUEを算出できたが、2006年までの値しか計算できなかったので、CPUEを資源評価の指標値の参考とした(図3)。

(2) 資源量指標値の推移

1975年以降の2そうびき沖合底びき網漁業による資源密度指数の経年変化をみると1977年には168.5に達していたものが2003年には2.5に激減した。2009年は8.3になったが、最大であった1977年の4.9%に過ぎない(表2、図4)。この30年ほどの間には一時的な増加が数回みられたものの資源は2003年までに減少の一途をたどっている。2004年以降資源密度指数は横ばい傾向を示しているので、西部海域では動向は横ばいと考えられる。沖合底びき網漁獲量も、沖合2そうびき沖合底びき網の資源密度指数とよく一致し、特に1997年以降は低い値を示している。島根県における沖合底びき網の月別の漁獲量推移を見ると(図5)、資源の状態が比較的よい1980年代では冬に月間最大約700トンの漁獲が見られたが、近年では盛漁期でも数十トンの低い値に留まっている。

一方青森県の漁獲量経年変化を見ると、1985年までの減少傾向は西部の2そう沖底の指数の傾向と符合するものの1986年以降は変動しながらも増加に転じ、1999年まではほぼ増加傾向にあった。しかし、2000年以降は2003年を除き、2004年までに減少傾向を示した。2005年以降は増加傾向を示し、2008年は過去5か年平均

を上回るまで回復したが、2009年は前年の約半分に大きく減少したことから、北部海域において資源水準は中位、動向は横ばい傾向にあると考えられる。なお、定置網の経営体数が比較的安定していることおよび2006年までのCPUE(定置網の1経営体あたり漁獲量)の変動傾向が漁獲量とよく一致していることから、漁獲量が資源量を表す指標として妥当であると考えられる。

なお、資源密度指数は各有漁漁区における漁獲量を操業網数で除したものを足し合わせた値を全有漁漁区数で除した値である。

(3) 資源の水準・動向

以上のように、日本海の北部と西部では資源の水準および動向が異なるが、対馬 暖流系全体として、資源水準は低位、資源動向は横ばいと考えられる。

5. 資源管理方策

(1) 資源と漁獲の関係

北部海域に比べて特に日本海西部ではヤリイカが低位水準であるが、以下に示すように、ヤリイカは環境の中長期的な変動の影響が見られるため、漁獲の影響についてはよく把握できていない。しかし、日本海西部海域では沖合底びき網漁業が漁獲の主体で、資源水準が高い年代にはイカ釣り漁業もヤリイカを主漁獲対象として操業を行っていたために、定置網が主体である日本海北部海域よりも漁獲圧が大きかった事が考えられる。

(2) 資源と海洋環境の関係

ヤリイカ資源と海洋環境との関係について、青森県漁獲量の変化は桜井(2001)も指摘するように1970年代後半から1980年代半ばまでの寒冷な環境下で減少し、1980年代から現在までの温暖な環境下で増加するなど水温の長期変動傾向に良く符合する。長沼(2000)も1980年代のデータを用いて日本海北区における50m水温の平均値が日本海北部海域における翌年のヤリイカ漁獲量と正の相関があることを示している。そこで、比較的長期の時系列データが利用可能な青森県の漁獲量と2そうびき沖合底びき網漁業の資源密度指数および日本海の50m深水温データを用いて検討した(図6、図7)。日本海北部では、青森県のヤリイカの漁獲量と日本海北区の50m冬季(3月)水温の間にはともにばらつきがあるものの、概ね正の対応関係が見られた。一方、西部海域では資源密度指数のデータが1975年以後にしかないが、1980年代末に大きく傾向が変わり、西区における冬季(3月)の50m深水温の変動傾向と負の対応関係を示し、1980年代末以降における水温上昇が西部海域における資源回復に不利に働いていると考えられる(Tian, 2007,2009)。

ヤリイカが北部海域と西部海域で水温に対する応答が異なるのは、対馬暖流域全域における1990年代の高温化に伴い、ヤリイカの分布が北偏したことによる可能性が考えられる(伊藤、2002)。西部海域でヤリイカ資源水準が高かった1975~1987年の冬季(3月)水温(10.9℃)が北部海域で資源水準が高い1988~2009年の冬季(3月)水温(9.9℃)に近く(図7)、冷水性のヤリイカの最適環境の中心が1980年代末を境に西部海域から北部海域に変わったことが示唆された。また太平洋側でもヤリイカの漁獲量の変動パターンおよび環境への応答が南北で異なると指摘されている(伊藤ら、2003)。このように、対馬暖流域におけるヤリイカ

の資源変動は中長期的に対馬暖流の指標である50m深水温によく対応し、いわゆる海洋環境のレジームシフト (Tian et al., 2006) に大きく関係することが示唆されたが、今後、対馬暖流系全体に及ぼす環境と漁獲の影響ついて検討することが必要であろう (Tian, 2009)。

6. 2011年のABCの設定

(1) 資源評価のまとめ

沖合底びき網漁業の資源密度指数と青森県の漁獲量動向から、ヤリイカ対馬暖流 系群の資源水準は低位、動向は横ばい傾向と判断した。

(2) ABCの算定

ヤリイカの漁獲量を比較的長期間にわたり記録しているものは青森県の漁獲統計と2そうびき沖合底びき網漁獲統計であるが、どちらも対馬暖流系全体の資源水準を代表するものではない。また、現在の漁獲の主体である北部の漁獲は定置網であること及び、水温の中長期的変動等環境の影響があると考えられるため、ABC算定規則2-2)に従い、過去3力年($2007\sim2009$ 年)の漁獲量の平均に δ_3 を0.8、 α を0.8としてABCを求めた。

 $ABClimit = \delta_3 \times Cave$ $ABCtarget = \alpha \times ABClimit$

	2011年ABC(百トン) 資源管理基準	F値	漁獲割合
ABClimit	28	0.8Cave3-yr	_	_
ABCtarget	22	0.8 · 0.8Cave3-yı	. —	

100トン未満を四捨五入。

(3) ABCの再評価

昨年度評価以降追加されたデータセット	修正・更新された数値
2008年漁獲量確定値	2008年漁獲量の確定

評価対象年	管理基準	資源量	ABClimit (百トン)	ABClimit (百トン)	漁獲量 (百トン)
2009年(当初)	0.8Cave3-yr	_	28	23	
2009年 (再評価)	0.8Cave3-yr	_	29	23	
2009年(2010年 再評価)	0.8Cave3-yr	_	29	23	21
2010年(当初)	0.8Cave3-yr	_	31	25	
2010年 (再評価)	0.8Cave3-yr	_	31	25	

7. ABC以外の管理方策等の提言

ヤリイカ資源は低水準にあるが、環境の影響も大きいと考えられるため、西部海域のヤリイカ資源が急速に回復する可能性は低いと思われる。資源が低水準にある場合は、資源の高水準期に比べて努力量が減少しても漁獲圧力が増大する可能性が

あるので、現在の不適切な環境レジームで資源の回復を図るには、小型イカの保護などの施策が重要であると考えられる(Tian,2009)。一方現在分布の中心と考えられる北部海域においては、長期的に見て1985年から1999年にかけては増加傾向にあったが、2000年以降は減少傾向に転じている。ヤリイカは年魚であるので、再生産が好転すれば資源も急速に回復する可能性がある。したがって産卵親魚を確保しながら、好環境下での大きな年級の発生を待つことによって資源の増大を図ることが重要である。

8. 引用文献

伊藤欣吾(2002) 我が国におけるヤリイカの漁獲実態.青森県水試研報,2,1-10. 伊藤欣吾・高橋進吾・筒井実・桜井泰憲(2003) 三陸海域におけるヤリイカの漁獲変動に及ぼす水温環境の影響.平成14年度イカ類資源研究会議報告,16-26. 木下貴裕(1989) ヤリイカの日齢と成長について.西海区水産研究所報告,67,59-68.

長沼光亮 (2000)生物の生息環境としての日本海.日水研報, 50, 1-42.

桜井泰憲(2001)気候変化とイカ類資源の変動.月刊海洋号外,24,228-236.

- Tian, Y. (2007) Long-term changes in the relative abundance and distribution of spear squid, *Loligo bleekeri*, in relation to seawater temperature in the south-western Japan Sea during the last three decades. GIS/Spatial Analyses in Fishery and Aquatic Sciences, 3, 27-46.
- Tian, Y. (2009) Interannual-interdecadal variations of spear squid Loligo bleekeri abundance in the southwestern Japan Sea during 1975-2006: impacts of the trawl fishing and recommendations for management under the different climate regimes. Fisheries Research, 100, 78-85.
- Tian, Y., Kidokoro, H., & Watanabe, T. (2006) Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades. Progress in Oceanography, 68, 217-237.
- 通山正弘(1987) 土佐湾におけるヤリイカの産卵期の推定.漁業資源研究会議西 日本底魚部会報, 15, 5-18.

表1. 対馬暖流系ヤリイカの道府県別漁獲量推移(1990~2009、単位トン)

年	北海道	青森県	秋田県	山形県	新潟県	富山県	石川県	福井県	京都府	兵庫県	鳥取県	島根県	山口県	北部計	西部計	対馬暖流計
1990	1,427	2,210	70		243	71	129	-	62	-	-	2,276	14	4,150	2,352	6,503
1991	1,500	2,090	74		163	131	71	-	21	-	-	1,512	9	4,029	1,542	5,571
1992	1,017	2,257	82		253	79	94	18	51	-	-	1,319	2	3,782	1,390	5,172
1993	1,348	2,307	95		238	44	49	33	32	-	-	308	4	4,081	377	4,458
1994	1,015	2,834	84		389	40	46	52	26	-	-	1,212	14	4,408	1,304	5,712
1995	2,176	3,904	114		366	59	150	66	33	-	-	220	49	6,768	368	7,136
1996	622	2,696	92		556	84	278	77	71	-	41	308	40	4,327	537	4,865
1997	884	2,650	65	79	205	49	154	104	106	95	124	143	14	4,086	587	4,673
1998	982	3,109	92	92	319	72	160	84	88	-	53	409	14	4,825	647	5,472
1999	699	3,616	116	102	342	58	211	92	65	20	70	232	18	5,144	497	5,641
2000	922	2,918	85	42	138	70	188	25	39	14	64	223	11	4,363	376	4,739
2001	375	2,022	100	51	133	78	93	55	25	16	39	292	13	2,852	440	3,292
2002	692	1,789	78	93	168	49	195	23	18	13	42	127	3	3,064	227	3,292
2003	591	3,064	90	67	223	114	124	118	33	14	97	192	14	4,272	468	4,740
2004	410	1,238	86	32	217	98	160	88	55	30	94	132	13	2,241	413	2,654
2005	524	1,633	102	31	140	71	99	40	41	17	306	97	20	2,600	521	3,121
2006	542	1,785	165	41	159	63	103	27	44	19	110	192	15	2,858	407	3,265
2007	992	2,025	103	38	200	107	176	74	64	19	204	447	17	3,641	826	4,467
2008	413	2,201	149	55	142	112	105	45	72	8	273	311	12	3,176	720	3,897
#2009	231	1,074	87	30	184	82	79	134	42	9	3	122	9	1,768	318	2,086

#2009年は暫定値(島根・山口・石川は主要港の集計値)。

表2. 青森県の漁獲量および2そうびき沖合底びき網の漁獲量と 資源密度指数の推移

年	青森県漁獲量	沖底2そ	こうびき
	(トン)	漁獲量(トン)	資源密度指数
1975	1,277	3,218	67.1
1976	3,310	7,482	110.9
1977	2,981	13,702	168.5
1978	3,456	6,145	82.4
1979	4,612	9,157	122.9
1980	4,112	9,879	134.3
1981	2,489	7,754	94.8
1982	1,868	5,830	66.2
1983	1,870	6,094	69.9
1984	1,382	4,577	57.1
1985	543	2,639	39.7
1986	879	2,749	38.7
1987	1,196	5,497	72.0
1988	2,199	3,763	47.6
1989	1,529	5,292	77.6
1990	2,210	2,775	42.8
1991	2,090	1,425	28.1
1992	2,257	1,057	28.4
1993	2,307	288	10.8
1994	2,834	941	34.4
1995	3,904	595	28.3
1996	2,696	463	23.2
1997	2,650	178	11.4
1998	3,109	196	12.3
1999	3,616	150	9.9
2000	2,918	76	6.2
2001	2,022	105	9.9
2002	1,789	28	3.6
2003	3,064	16	2.5
2004	1,238	42	3.9
2005	1,633	51	5.6
2006	1,785	134	9.6
2007	2,025	86	6.5
2008	2,201	50	5.3
2009	1,074	47	8.3

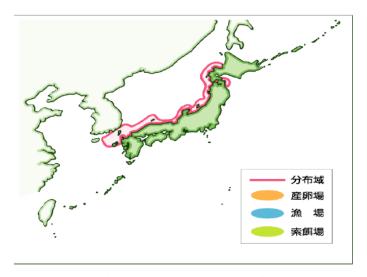


図1. 対馬暖流系ヤリイカの主分布域

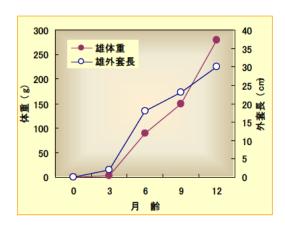


図2-1. ヤリイカ雄の成長

図2-2. ヤリイカ雌の成長

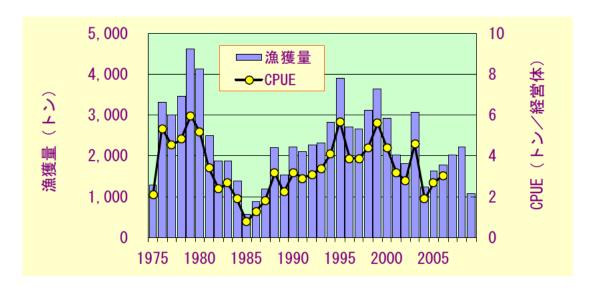


図3. 青森県の漁獲量とCPUE (トン/経営体)の経年変化 (CPUEは2006年まで)

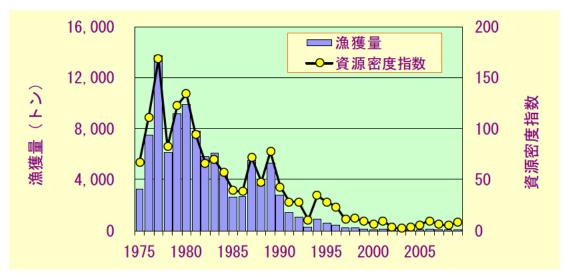


図4. 2そうびき沖合底びき網の漁獲量と資源密度指数

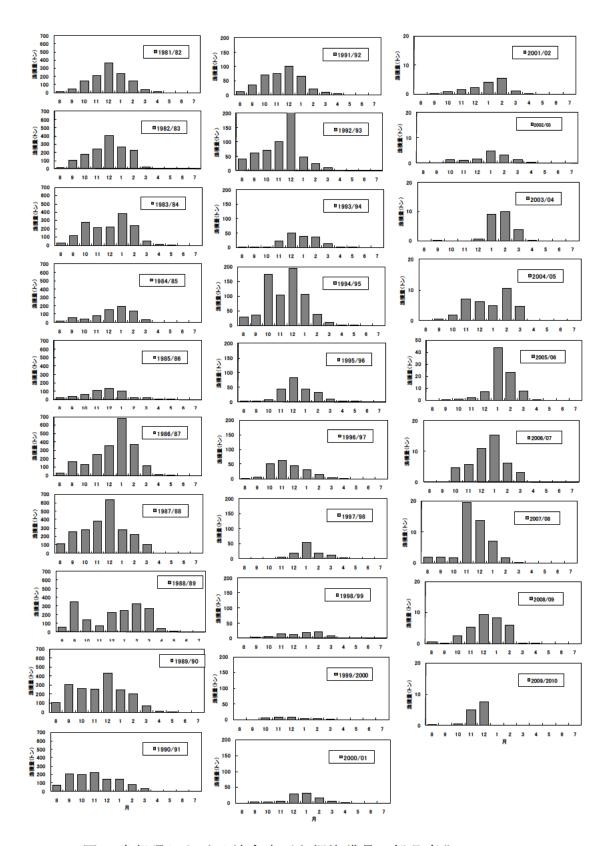


図5. 島根県における沖合底びき網漁獲量の経月変化 (注意:年代によって漁獲量のスケールが異なる)

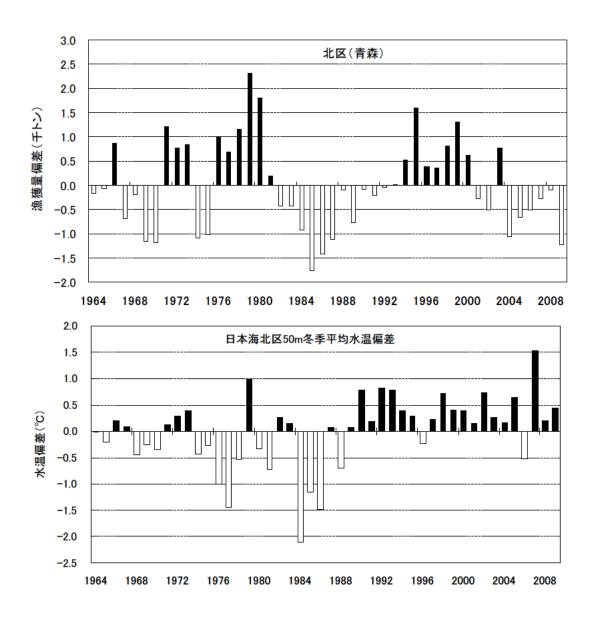


図6. 青森県におけるヤリイカ漁獲量の偏差(上)と日本 海北区50m深冬季(3月)水温の偏差(下)の推移 注:偏差は各年と平年値(1964~2009年の46年平均) の差。

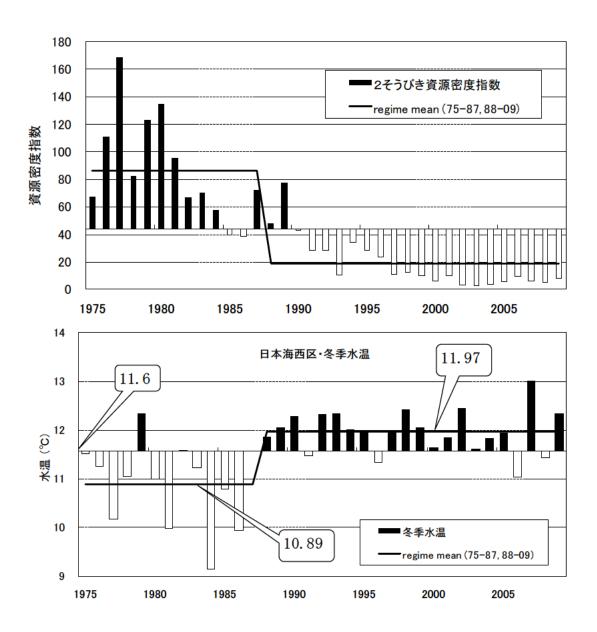


図7. 2そうびき底びき網漁業資源密度指数(上)と日本海西区の冬季(3月)50m水温(下)の推移注:横軸は全期間(1975~2009年)の平均値に設定している。太い実線はそれぞれ1975~1987年と1988~2009年の平均値を示している。