平成26(2014)年度マサバ対馬暖流系群の資源評価

責任担当水研:西海区水産研究所(由上龍嗣、依田真里、安田十也、福若雅章)

参 画 機 関:日本海区水産研究所、青森県産業技術センター水産総合研究所、秋田 県水産振興センター、山形県水産試験場、新潟県水産海洋研究所、富 山県農林水産総合技術センター水産研究所、石川県水産総合センター、 福井県水産試験場、京都府農林水産技術センター海洋センター、兵庫 県立農林水産技術総合センター但馬水産技術センター、鳥取県水産試 験場、島根県水産技術センター、山口県水産研究センター、福岡県水 産海洋技術センター、佐賀県玄海水産振興センター、長崎県総合水産 試験場、熊本県水産研究センター、鹿児島県水産技術開発センター

要約

本系群の資源量について、資源量指数を考慮したコホート解析により計算した。資源量は、1973~1996年の間は、一時的に 60万~70万トン台に低下した年はあるものの、100万トン前後で推移し比較的安定していたが、1997年以降、減少傾向を示している。2013年の資源量は 43万トンと推定され、1973年以降で最低値となった。2013年の親魚量は 153千トンと推定され、Blimit (247千トン)を下回っており、資源水準は低位、最近5年間 (2009~2013年)の資源量の推移から動向は減少と判断した。親魚量の水準は低く、親魚量の回復措置をとる必要がある。今後、再生産成功率(加入量÷親魚量)が過去23年間 (1990~2012年)の中央値で継続した場合に、それぞれの漁獲シナリオで期待される漁獲量を算定した。本系群は韓国、中国等によっても漁獲されている。特に、東シナ海において数百隻の中国漁船が操業しているとされており、当該資源に大きな影響を与えているものと想定されるが、資源評価においてそれらの影響を考慮できていない。

	F 値	漁	将来漁獲	善	評価		
漁獲シナリオ	(Fcurrent	獲	.1.4 \L \L \V. \V. \V.		2013 年親	Blimit	2015年
(管理基準)	との比較)	割	5年後 5年		魚量を維持	へ回復	漁期 ABC
	,,	合		平均	(5年後)	(5年後)	
親魚量の増大	0.44 (0.53	26	187 千トン	251	1000/	070/	135
(F30%SPR) *	Fcurrent)	%	~ 453 チトン	千トン	100%	97%	千トン
親魚量の増大の			222 千トン				
予防的措置	0.35 (0.42	22	~	231	100%	100%	114
(0.8F30%SPR) *	Fcurrent)	%	427 千トン	千トン			千トン
親魚量の増大	0.52 (0.62	30	171 千トン	254			151
$(B/Blimit \times Fmed)$	Fcurrent)	30 %	~	エンチートン	98%	90%	チトン
(Frec2) *	T carrent)	/0	460 千トン	1 1 4			1 1 4
親魚量の増大の	0.42 (0.50	25	210 千トン	246	4000/	0.007	129
予防的措置	Fcurrent)	Fourrent) % ~ £ \(\sqrt{100\%} \)		99%	チトン		
(0.8Frec2) *			452 千トン 108 千トン				
親魚量の増大 (5年で Blimit へ	0.71 (0.85	38	108 + 1 >	223	75%	51%	183
回復)(Frec1)*	Fcurrent)	%	429 千トン	チトン	7370	31/0	チトン
親魚量の増大の							
予防的措置(5	0.57 (0.68	32	154 千トン	251	0.504	0.00	160
年で Blimit へ回	Fcurrent)	%	~ 461 チトン	チトン	96%	82%	チトン
復)(0.8Frec1)*			461 ナトン				
							2015年
							漁期算定
							漁獲量
現状の漁獲圧の	0.04 (1.00	42	90 千トン	100			100
維持 (Fcurrent) *	0.84 (1.00 Fcurrent)	42 %	~	199 千トン	43%	14%	199 チトン
=親魚量の維持 (Fmed)	1 current)	/0	347 千トン	1 1. 2			1 1. 2
現状の漁獲圧の			126 千トン				
維持の予防的措	0.67 (0.80	36	~	231	83%	57%	176
置 (0.8Fcurrent)*	Fcurrent)	%	437 千トン	千トン			千トン
	•						

コメント

- ・本系群の ABC 算定には、規則 1-1)-(2)を用いた。
- ・海洋生物資源の保存及び管理に関する基本計画第 3 に記載されている本系群の中期的管理方針では、「大韓民国及び中華人民共和国等と我が国の水域にまたがって分布し、外国漁船によっても採捕が行われていて我が国のみの管理では限界があることから、関係国との協調した管理に向けて取り組みつつ、当面は資源を減少させないようにすることを基本に、我が国水域への来遊量の年変動も配慮しながら、管理を行うものとする。」とされており、親魚量の維持シナリオから得られる漁獲係数以下であれば、資源を維持または増大させることができると考えられる。同方針に合致する漁獲シナリオには*を付した。
- ・不確実性を考慮して安全率 α を 0.8 とした。
- ・若齢魚の漁獲回避が、親魚量増大に有効な方策と考えられる。

Fcurrent は 2011~2013 年の F の平均。2015 年漁期は 2015 年 7 月~2016 年 6 月。漁獲割合は 2015 年漁期漁獲量/資源量(資源量は 2015 年 1 月と 2016 年 1 月時点推定値の平均)。F 値は各年齢の平均。将来漁獲量及び評価は再生産成功率の変動を考慮した1,000 回シミュレーションから算定した。将来漁獲量の幅は 80%区間を示す。漁獲シナリオにある「親魚量の維持」は、中長期的に安定する親魚量での維持を指す。

年*	資源量 (千トン)	漁獲量 (千トン)	F値	漁獲割合
2012	528	233 (111)	0.86	44%
2013	428	167 (62)	0.70	39%
2014	475	_	_	_

^{*}年は暦年(1~12 月)。2014年の資源量は加入量を仮定した値。() 内は我が国 EEZ 内の漁獲量。

	指標	水準	設定理由
Bban	未設定		
Blimit	親魚量	1997 年水準(247 千トン)	これ以下の親魚量だと、良好な加
			入量があまり期待できなくなる。
2013年	親魚量	1997年水準以下(153 千トン)	

水準:低位 動向:減少

本件資源評価に使用したデータセットは以下のとおり

データセット	基礎情報、関係調査等
年齢別•年別漁獲尾数	漁業・養殖業生産統計年報 (農林水産省)
	主要港水揚量(青森~鹿児島(17)府県)
	九州主要港入り数別水揚量(水研セ)
	大中型まき網漁業漁獲成績報告書(水産庁)
	月別体長組成調査(水研セ、青森~鹿児島(17)府県)
	・市場測定
資源量指数	
・0 歳魚指標値	九州主要港入り数別水揚量(水研セ)
	境港銘柄別水揚量(鳥取県)
	幼稚魚分布調査(水研セ、山口県、長崎県、鹿児島県)
	・ニューストンネット
	計量魚探による浮魚類魚群量調査 (水研セ)
	・計量魚探、中層トロール
	資源量直接推定調査(水研セ) ・着底トロール
·年齢別資源量指数	大中型まき網漁業漁獲成績報告書(水産庁)
自然死亡係数(M)	年当たり M=0.4 を仮定(Limbong et al. 1988)

1. まえがき

対馬暖流域(東シナ海・黄海・日本海)のマサバはまき網漁業の重要資源で、東シナ海及び日本海で操業する大中型まき網漁業による漁獲量の20%を占める(2013年)。これまで浮魚資源に対する努力量管理は、大中型まき網漁業の漁場(海区制)内の許可隻数を制限するなどの形で行われてきた。さらに平成9(1997)年から、ゴマサバと合わせてさば類としてTAC(漁獲可能量)による資源管理が実施されている。また、平成21(2009)年度から平成23(2011)年度の間、日本海西部・九州西海域マアジ(マサバ・マイワシ)資源回復計画が実施され、小型魚保護のため、大中型まき網漁業は小型魚を主体とする漁獲があった場合、以降、集中的な漁獲圧をかけないように速やかに漁場移動を行い、中・小型まき網漁業は団体毎に一定日数の休漁、水揚げ日数制限等の漁獲規制の取り組みがなされた。資源回復計画は平成23(2011)年度で終了したが、同計画で実施されていた措置は、平成24(2012)年度以降、新たな枠組みである資源管理指針・計画の下、継続して実施されている。

2. 生態

(1) 分布·回遊

分布は東シナ海南部から日本海北部、さらに黄海や渤海にも及ぶ(図1)。春夏に索餌のために北上回遊を、秋冬に越冬・産卵のため南下回遊をする。日本海北部で越冬する群もある。

(2) 年齢·成長

成長は海域や年代等によってやや異なるが、ふ化後1年で尾叉長25~28cm、2年で29~32cm、3年で33~35cm、4年で36cm、5年で37cmに達する(Shiraishi et al. 2008、図2)。寿命は6歳程度と考えられる。

(3) 成熟·産卵

産卵は東シナ海南部の中国沿岸から東シナ海中部、朝鮮半島沿岸、九州・山陰沿岸の広い海域で行われる。産卵期は南部ほど早く(1~4月)、北部は遅い(5~6月)傾向がある(Yukami et al. 2009)。成熟年齢は1~2歳で、1歳で産卵に参加する個体が60%、2歳では85%、3歳以上では100%と見積もられている(白石 未発表、図3)。

(4) 被捕食関係

オキアミ類、アミ類、橈脚類などの浮遊性甲殻類とカタクチイワシなどの小型魚類 を主に捕食する。稚幼魚は魚食性の魚類に捕食されると考えられる。

3. 漁業の状況

(1) 漁業の概要

対馬暖流域のマサバのほとんどは、大中型まき網漁業及び中・小型まき網漁業で漁獲され、主漁場は東シナ海、韓国沿岸、九州北西岸及び日本海西部海域である。

(2) 漁獲量の推移

統計上マサバとゴマサバは区別されず、さば類として一括されることが多いので、本報告では統計資料から独自に算定した漁獲量の値を使用する(補足資料 2-1-補注 1、表 1)。東シナ海・黄海・日本海における我が国のマサバ漁獲量は、1970 年代後半は 269 千~298 千トンであったが、その後減少し、1990~1992 年は 131 千~153 千トンと 大きく落ち込んだ(図 4、表 2)。1993 年以降、漁獲量は増加傾向を示し、1996 年には 411 千トンに達したが、1997 年には 211 千トンに大きく減少した。その後もさらに減少し、2000~2006 年は 90 千トン前後の低い水準で推移した。2007~2009 年にかけて緩やかな増加傾向を示したが、その後は再び減少し、2012 年には 108 千トンとなった。 2013 年には 64 千トンに急減し、1973 年以降で最も低い値となった。韓国のマサバ漁獲量(韓国のさば類漁獲量におけるマサバとゴマサバの割合については補足資料 2-1)についても、2011 年は 139 千トン、2012 年は 125 千トン、2013 年は 102 千トンと、減少傾向を示している(「漁業生産統計」韓国海洋水産部)。中国のさば類漁獲量は、1995 年以降、40 万トン前後で推移し、2011 年は 56 万トンとなったが、2012 年は 51 万トンに減少している(FAO Fish statistics: Capture production 1950-2012 (Release date: March 2014))。中国のマサバとゴマサバの魚種別の漁獲量は不明である。

(3) 漁獲努力量

東シナ海・日本海西部で操業する大中型まき網の網数を図 5 に示す。網数は、1980年代後半に最大となったが、1990年以降は減少している。後述の有効漁獲努力量も1998年以降は概ね減少傾向を示している(図 6)。

4. 資源の状態

(1) 資源評価の方法

漁獲量、漁獲努力量等の情報を収集し、漁獲物の生物測定結果と併せて年齢別・年 別漁獲尾数による資源解析を行った(補足資料 1、2-1)。資源計算は日本と韓国の漁獲 について行った。中国の漁獲量はマサバ・ゴマサバ魚種別になっていないことと、直 近年(2013 年)の値が得られないこと等から考慮していない。

新規加入量(0歳魚)を主対象として、2~6月にニューストンネット等を用いた幼稚魚分布調査、5~6月に着底トロール網による現存量推定調査、7~9月にトロール網と計量魚探による魚群量調査を行った(補足資料3)。ただし、現時点ではこれらの調査結果から資源計算に用いることができる加入量指標値が得られておらず、データの

蓄積、調査手法を改善しつつ、定性的な参考情報として用いている。

(2) 資源量指標値の推移

東シナ海・日本海西部で操業する大中型まき網の資源密度指数は、1991~1996年に増加傾向を示した後、1997~2001年にかけて減少した(図 6)。2002~2007年は緩やかな増加傾向を示していたが、2008年に急増し、2009年はさらに高い値を示した。2010年は2009年と同程度の高い値を示したが、2011年以降、急激に減少し、2013年は低い値を示している。有効漁獲努力量は、1994年までは同程度の水準を保っていたが、1995~1997年に大きく変動した(図 6)。1998~2010年は低い水準で減少傾向を示していたが、2011・2012年は増加し、2013年は2012年より減少した。なお、資源密度指数は、緯経度30分間隔で分けられた漁区のうち、2013年に操業が行われた漁区について、漁区ごとの一網当り漁獲量の総和をマサバの漁獲があった漁区数で割って求めた。有効漁獲努力量は、2013年に操業が行われた漁区の漁獲量を資源密度指数で割って求めた。

豆銘柄の漁獲状況から求めた 0 歳魚指標値(補足資料 2-1-補注 3) は、値が得られる 1998 年以降でみると、2000 年に低い値を示し、2001~2007 年に横ばいで推移した後、 2008 年に高い値を示したが、2009 年以降は減少傾向を示している(図 7)。

(3) 漁獲物の年齢組成

0歳魚と1歳魚が主に漁獲される(図8、表3)。1990年代以降、全体の漁獲尾数に 占める0歳魚の割合が高まり、2歳魚以上の割合は低くなっている。

(4) 資源量と漁獲割合の推移

コホート計算により求めた資源量は、1973~1989年には87万~125万トンで比較的安定していた(図9、表2)。1987年の125万トンから1990年の64万トンまで減少した後、増加傾向を示し、1993~1996年には110万~137万トンの高い水準に達した。しかし1997年以降、資源量は急激に減少し、2000年には45万トンにまで落ち込んだ。2000~2007年まで低い水準で推移していたが、2008年は70万トンに増加した。2009年は56万トンに減少し、その後は2012年まで横ばい傾向を示していたが、2013年に急減して43万トンとなり、1973年以降で最低値となった。漁獲割合は1996年に急増し、1997年にやや減少したものの、その後は2013年まで比較的高い水準で推移している(図9、表2)。

加入量(資源計算の0歳魚資源尾数)は、1995年にかなり高い値を示した後、1996・1997年に急減し、その後も2002年にかけて減少した(図10、表2)。2004年にはやや増加したものの、2005年は再び減少し、2006・2007年も低い値で推移した。2008年は急増し、近年では高い値となったが、2009年以降は再び低い値で推移している。親魚量(資源計算の成熟魚資源量)は、1993~1996年に増加し高い水準に達したが、1997

年に急減し、さらに 2003 年まで減少傾向が続いた(図 10、表 2)。2004 年の高い加入量により親魚量は 2005 年に増加し、その後は再び緩やかに減少していたが、2008 年の高い加入量により 2009 年に増加した。2010 年以降は再び低い値で推移している。

コホート計算に使った自然死亡係数(M)に対する感度解析として、仮定値(0.4)に対して 0.3 および 0.5 とした場合の 2013 年の資源量、親魚量、加入量を図 11 に示す。資源量はそれぞれ 89% および 113%、親魚量は 90% および 112%、加入量は 88% および 115% となり、M の値が大きくなると、いずれの値も大きくなる。

漁獲係数 F (各年齢の F の単純平均) は、1973~1984 年に漸減した後、1985~1995年まで漸増し、1996年に急増した(図 12、有効漁獲努力量を併せて図示)。F は 1997・1998年には減少したが、2000年に再び増加した。その後、F は 2008年まで増減を繰り返しながら横ばい傾向を示していたが、2009年に増加し、2010年以降は減少傾向を示している。0歳魚の F は、1990年頃から増加傾向にあり、近年も高い水準を維持している(図 12)。有効漁獲努力量と F はほぼ同様の変動傾向を示しているが、1998年以降、有効漁獲努力量が低い水準で減少傾向を示しているのにもかかわらず F が高い水準にあるのは、韓国の漁獲圧が 1990年代後半から高くなっていることによる可能性がある。

資源量とFの間に、はっきりした関係は見られない(図13)。

(5) 資源の水準・動向

資源水準について、高位は過去 41 年間 (1973~2013 年) における資源量の順位の上位 1/3 とし、中位と低位の境界は Blimit とする。2013 年の資源量は過去 41 年間で最も低い値であり、後述するように 2013 年の親魚量が Blimit を下回っていることから、資源水準は低位とした。動向は、最近 5 年間 (2009~2013 年) の資源量の推移から減少と判断した。

(6) 再生產関係

親魚量と加入量の間に、弱い正の相関がある(図 14a、5%有意水準)。特に、親魚量が少ない場合には高い加入量が出現しない傾向があり、1990年以降では親魚量と加入量の間に強い正の相関がある(図 14b、1%有意水準)。

(7) Blimit の設定

過去 41 年間の加入量の上位 10%を示す直線と、再生産成功率の上位 10%を示す直線の交点に当たる親魚量は 21 万トン程度である (図 14)。また、1990 年以降では親魚量と加入量の間に正の相関があるので (24 年、1%有意水準)、高い加入量を得るために、なるべく高い親魚量を確保することが望まれる。これらのことから、大きく資源が減少した 1997 年の親魚量 (247 千トン) を資源回復の閾値(Blimit)とした。2013 年の親魚量は 153 千トンであり、Blimit を下回っている。

(8) 今後の加入量の見積もり

再生産成功率(加入量÷親魚量)は、親魚量と産卵量に比例関係があるとすれば、発生初期の生き残りの良さの指標値になると考えられる。再生産成功率は、1991年以降、比較的高い値を示していて、1995、2004、2008、2010年にかなり高い値を示した(図15)。また、2004年以降、再生産成功率の変動幅が大きくなっている。再生産成功率(の対数)と親魚量の間には負の相関があり(1%有意水準)、密度効果が働いている可能性がある(図16)。

再生産成功率の変動には、海洋環境が深く関わっていると考えられる。再生産成功率の対数と親魚量に直線関係を当てはめ、直線からの残差を東シナ海(北緯 29 度 30 分、東経 127 度 30 分)の 2 月の海面水温(気象庁保有データ)と比較した結果を図17 に示す。残差と海面水温の間には負の相関があることから(1%有意水準)、水温に代表される海洋環境が初期生残等に大きな影響を与えると想定されるが、詳細については不明な点が多く、今後の課題である。

1990年以降、親魚量と加入量の間に強い正の相関が見られ、直近年(2013年)の加入量計算値は特に不確実性が高いので、ABCの算定等においては、2014年以降の再生産成功率を、直近年を除く過去23年間(1990~2012年)の中央値6.9尾/kgと設定する。また、加入量に対する密度効果があると想定されることから、親魚量が35万トン以上では、加入量を親魚量35万トンと再生産成功率の積とする(再生産成功率の変動を考慮しない場合、加入量は24億尾で一定)。

(9) 生物学的な漁獲係数の基準値と現状の漁獲圧の関係

漁獲係数 F の年齢別選択率は年変動が大きく、その変動に一定の傾向が見られないことから、2014 年以降の年齢別選択率は、現状の F (Fcurrent)の参照期間である過去 3 年より長い過去 5 年(2009~2013 年)の平均とする。なお、現状の F (Fcurrent)は、年齢別選択率が 2009~2013 年の平均 (0歳=0.35、1歳=1、2歳=0.72、3歳=0.72)で、各年齢の F の単純平均値が 2011~2013 年の平均値(0.84)である F とする(0歳=0.43、1歳=1.21、2歳=0.86、3歳=0.86)。年齢別選択率を一定として F を変化させた場合の、加入量当り漁獲量(YPR)と加入量当り親魚量(SPR)を図 18 に示す。Fcurrent は、Fmed とほぼ等しく、F0.1、F30%SPR より高い。

5. 2015 年漁期 ABC の算定

(1) 資源評価のまとめ

資源量は、1973~1996年の間は、一時的に 60 万~70 万トン台に低下した年はあるものの、100 万トン前後で推移し、比較的安定していたが、1997年以降、減少傾向を示している。2013年の資源量は 43 万トンと推定され、1973年以降で最低値となった。再生産関係から Blimit は 1997年の親魚量水準 (247千トン)とした。2013年の親魚量は 153 千トンで Blimit を下回っており、資源水準は低位、動向は最近 5 年間(2009~

2013年)の資源量の推移から減少と判断した。親魚量の水準は低く、親魚量の回復措置をとる必要がある。

(2) 漁獲シナリオに対応した 2015 年漁期 ABC 並びに推定漁獲量の算定

2013年の親魚量が Blimit を下回っていることから、ABC 算定規則 1-1)-(2)を適用し、漁獲シナリオの提案を行った。親魚量の回復を図るシナリオとして、F の基準値(親魚量維持シナリオ=Fmed)を現在親魚量と Blimit の比で引き下げた F(Frec2)(Fmed×2013年 SSB/Blimit)、および 5年後に親魚量が Blimit に回復することが期待できる F(Frec1)を設定した。なお、併せて Fmed、Fcurrent、F30%SPR についても検討した。

ABC を 7月~翌年 6月とする漁期年に対して計算するため、将来予測においては、 1~6 月と 7~12 月の半年を単位とするコホート計算を行った(補足資料 2-2)。設定し た加入量の条件(再生産成功率=1990~2012年の中央値6.9尾/kg、親魚量が35万ト ンを超えた場合は加入量 24 億尾で一定) の下で、2014 年漁期の終わり(2015 年 6 月) までの F は Fcurrent とし、2015 年漁期の始め(2015 年 7 月) よりそれぞれの漁獲シナ リオに合わせて F を変化させた場合の推定漁獲量と資源量を計算した (図 19、20)。 Fmed は、年齢別選択率が 2009~2013 年の平均で、SPR が 145g (1÷0.0069 尾/g) に なる F(0 歳=0.43、1 歳=1.21、2 歳=0.86、3 歳=0.86)であるが、その値が Fcurrent とほぼ等しいので、Fcurrent=Fmed とし、1 つのシナリオとして扱った。Frec1 は後で 行う加入量の不確実性を考慮した検討において、50%以上の確率で 5 年後に Blimit へ 回復が期待できる F(0歳=0.36、1歳=1.03、2歳=0.73、3歳=0.73)、Frec2 は Fmed を 2013 年親魚量と Blimit の比(0.62)で引き下げた F(0歳=0.27,1歳=0.75,2歳=0.54、 3 歳=0.54)、 F30%SPR は、親魚量の増大が期待できるシナリオとして、漁獲がない 場合の 30%に相当する SSB/R を達成する F(0歳=0.22、1歳=0.63、2歳=0.45、3 歳=0.45)とした。なお、後述の加入量の不確実性を考慮した検討や、表 4 に記載す る将来予測においては、暦年単位で計算するため、2015年1月よりFを変化させるこ とになり、管理開始が半年ずれることから、半年単位の将来予測の漁獲量、資源量等 との間に若干のずれが生じる。

海猫シナリナ	答 珊 甘 潍		漁獲量(千トン、漁期年)								
漁獲シナリオ	管理基準	2013	2014	2015	2016	2017	2018	2019			
親魚量の増大	F30%SPR (F=0.44)	171	200	135	172	245	337	367			
上記の予防的措置	0.8F30%SPR (F=0.35)	171	200	114	155	238	307	340			
SSB2013/Blimit×Fmed	Frec2 (F=0.52)	171	200	151	183	243	315	378			
上記の予防的措置	0.8Frec2 (F=0.42)	171	200	129	168	244	329	361			
5 年で Blimit へ回復	Frec1 (F=0.71)	171	200	183	197	220	244	270			
上記の予防的措置	0.8Frec1 (F=0.57)	171	200	160	189	239	297	369			
現状の漁獲圧維持 =親魚量維持	Fcurrent=Fmed (F=0.84)	171	200	199	199	199	199	199			
上記の予防的措置	0.8Fcurrent (F=0.67)	171	200	176	196	226	259	297			
漁獲シナリオ	管理基準	資源量 (千トン、漁期年)									
(無後シブリカ	百烃基毕	2013	2014	2015	2016	2017	2018	2019			
親魚量の増大	F30%SPR (F=0.44)	451	475	515	660	915	1,161	1,305			
上記の予防的措置	0.8F30%SPR (F=0.35)	451	475	525	714	1,009	1,263	1,419			
SSB2013/Blimit×Fmed	Frec2 (F=0.52)	451	475	506	616	800	1,012	1,179			
上記の予防的措置	0.8Frec2 (F=0.42)	451	475	518	674	940	1,188	1,335			
5 年で Blimit へ回復	Frec1 (F=0.71)	451	475	487	524	580	643	713			
上記の予防的措置	0.8Frec1 (F=0.57)	451	475	501	590	734	917	1,089			
現状の漁獲圧維持 =親魚量維持	Fcurrent=Fmed (F=0.84)	451	475	475	475	475	474	474			
上記の予防的措置	0.8Fcurrent (F=0.67)	451	475	491	542	621	713	818			

漁期は7月~翌年6月。資源量は当該年1月と翌年1月時点推定値の平均。

(3) 加入量の不確実性を考慮した検討、シナリオの評価

再生産成功率の年変動が親魚量と漁獲量の動向に与える影響を見るために、2014~2025年の加入量を仮定値の周りで変化させ、Fcurrent (=Fave3-yr=Fmed)、Frec1、Frec2、F30%SPR、0.8Fcurrent、0.8Frec1、0.8Frec2、0.8F30%SPRで漁獲を続けた場合の親魚量と漁獲量を暦年単位で計算した。2014年以降の加入量は、1973~2012年の再生産成功率の平均値に対する各年の再生産成功率の比を計算し、それらの値から重複を許してランダムに抽出したものに仮定値 6.9 尾/kg と年々の親魚量を乗じたものとした。親魚量が 35 万トンを超えた場合は、加入量を計算する際の親魚量は 35 万トンで一定と

した。

1,000 回シミュレーションした結果を図 21 に示す。親魚量のシミュレーション結果を見ると、Fcurrent(=Fmed)の場合、1,000 回の平均値では親魚量が現状の値をほぼ維持したが、下側 10%(下位 100 回)では親魚量が減少傾向を示し、2025 年にはかなり低い値になった。Frec1 の場合、平均値では親魚量が緩やかな増加傾向を示したが、下側10%では親魚量が低い値で横ばい傾向を示した。Frec2、F30%SPR の場合、平均値では親魚量が増加傾向を示した。0.8Fcurrent、0.8Frec1 の場合、平均値では親魚量が増加傾向を示した。0.8Fcurrent、0.8Frec1 の場合、平均値では親魚量が増加傾向を示し、下側 10%でも親魚量が緩やかな増加傾向を示した。

漁獲量のシミュレーション結果を見ると、Fcurrent の場合、1,000 回の平均値では漁獲量がほぼ横ばい傾向を示したが、下側 10%では減少傾向を示し、2025 年にはかなり低い値を示した。Frec1 の場合、平均値では漁獲量が緩やかな増加傾向を示したが、下側 10%では現在よりも低い値で横ばい傾向を示した。Frec2、F30%SPR の場合、平均値では漁獲量が増加傾向を示し、下側 10%では漁獲量が管理を開始する 2015 年に減少するものの、その後は増加傾向を示した。0.8Fcurrent、0.8Frec1 の場合、平均値では漁獲量が増加傾向を示し、下側 10%でも漁獲量が緩やかな増加傾向を示した。0.8Frec2、0.8F30%SPR の場合、平均値および下側 10%ともに、漁獲量が管理を開始する 2015 年に減少するものの、その後は増加傾向を示した。

1,000 回シミュレーションの際、併せて 5 年後 (2019 年) 予測漁獲量の幅 (上下 10% の値を除いた 80%区間)、5 年 (2015~2019 年) 平均漁獲量、5 年後 (2020 年 1 月) に 2013 年の親魚量を維持する確率、5 年後に Blimit を上回る確率を次ページに示す。

5 年後予測漁獲量の幅は、すべてのシナリオにおいて、再生産成功率の変動の大きさを反映してかなり広くなった。5 年後予測漁獲量の幅の上側の値は、F を低い値にするほど高い値となる傾向が見られたが、加入量の設定条件のため、F を 0.8Frec1 より低い値にしても増加しなかった。一方、下側の値は、F を低い値にするほど高い値となる傾向が見られた。

5年平均漁獲量は、Fを低い値にするほど高い値となる傾向が見られたが、加入量の設定条件のため、FをFrec2より低い値にしても増加しなかった。5年後に2013年親魚量維持する確率およびBlimitを上回る確率は、Fを低い値にするほど高くなった。

上記の検討より、資源量推定値などの不確実性を踏まえた予防的措置として、安全係数 0.8 を乗じた F 値による ABC が望ましい。

	F 値	漁	将来漁獲	善	評価		
漁獲シナリオ	(Fcurrent	獲	44 \\ 1\(\mathref{v}\)		2013 年親	Blimit	2015年
(管理基準)	との比較)	割	5 年後	5年	魚量を維持	へ回復	漁期 ABC
		合		平均	(5年後)	(5年後)	
親魚量の増大	0.44 (0.53	26	187 千トン	251	1000/	070/	135
(F30%SPR) *	Fcurrent)	%	~ 453 チトン	千トン	100%	97%	チトン
親魚量の増大の			222 千トン				
予防的措置	0.35 (0.42	22	~	231	100%	100%	114
(0.8F30%SPR) *	Fcurrent)	%	427 千トン	千トン	100,0	100,0	チトン
親魚量の増大	0.52 (0.62	20	171 千トン	254			1.5.1
$(B/Blimit \times Fmed)$	0.52 (0.62 Fcurrent)	30 %	\sim	254 千トン	98%	90%	151 チトン
(Frec2) *	reurrent)	70	460 千トン	1 1 2			1 1 2
親魚量の増大の	0.42 (0.50	25	210 千トン	246			129
予防的措置	Fcurrent)	%	~	チトン	100%	99%	チトン
(0.8Frec2) *			452 千トン				
親魚量の増大 (5年で Blimit へ	0.71 (0.85	38	108 千トン	223	75%	51%	183
回復)(Frec1)*	Fcurrent)	%	429 千トン	チトン	7370	3170	チトン
親魚量の増大の							
予防的措置(5	0.57 (0.68	32	154 千トン	251			160
年で Blimit へ回	Fcurrent)	%	~ 461 チトン	チトン	96%	82%	チトン
復) (0.8Frec1)*			461 十トン				
							2015年
							漁期算定
							漁獲量
現状の漁獲圧の	0.04/1.00		90 千トン	100			100
維持 (Fcurrent) *	0.84 (1.00 Fcurrent)	42 %	~	199 千トン	43%	14%	199 千トン
=親魚量の維持 (Fmed)	r current)	/0	347 千トン				
現状の漁獲圧の			126 千トン				1.5-1
維持の予防的措	0.67 (0.80	36	~	231 エレン	83%	57%	176 エレン
置 (0.8Fcurrent)*	Fcurrent)	%	437 千トン	千トン			千トン
- 2001							

コメント

- ・本系群の ABC 算定には、規則 1-1)-(2)を用いた。
- ・海洋生物資源の保存及び管理に関する基本計画第 3 に記載されている本系群の中期的管理方針では、「大韓民国及び中華人民共和国等と我が国の水域にまたがって分布し、外国漁船によっても採捕が行われていて我が国のみの管理では限界があることから、関係国との協調した管理に向けて取り組みつつ、当面は資源を減少させないようにすることを基本に、我が国水域への来遊量の年変動も配慮しながら、管理を行うものとする。」とされており、親魚量の維持シナリオから得られる漁獲係数以下であれば、資源を維持または増大させることができると考えられる。同方針に合致する漁獲シナリオには*を付した。
- ・不確実性を考慮して安全率 α を 0.8 とした。
- ・若齢魚の漁獲回避が、親魚量増大に有効な方策と考えられる。

Fcurrent は 2011~2013 年の F の平均。2015 年漁期は 2015 年 7 月~2016 年 6 月。漁獲割合は 2015 年漁期漁獲量/資源量(資源量は 2015 年 1 月と 2016 年 1 月時点推定値の平均)。F 値は各年齢の平均。将来漁獲量及び評価は再生産成功率の変動を考慮した1,000 回シミュレーションから算定した。将来漁獲量の幅は 80%区間を示す。漁獲シナリオにある「親魚量の維持」は、中長期的に安定する親魚量での維持を指す。

(4) ABC の再評価

昨年度評価以降追加	修正・更新された数値								
されたデータセット									
2012 年漁獲量確定値	2012、2013 年年齢別漁獲尾数								
2013 年漁獲量暫定値									
2013年月別体長組成									
2013 年大中型まき網	2013 年までの資源密度指数、2013 年までの年齢別資源尾数								
漁業漁獲成績報告書	(再生産関係)、漁獲係数(年齢別選択率)								

評価対象年 (当初・再評価)	管理基準	F値	資源量 (千トン)	ABClimit (チトン)	ABCtarget (チトン)	漁獲量 (千トン)
2013 年漁期(当初)	Fmed	0.77	842	341	297	
2013 年漁期 (2013 年再評価)	Fmed*	0.81	666	285	250	
2013 年漁期 (2014 年再評価)	Fmed*	0.71	447	162	141	171
2014 年漁期(当初)	Frec1	0.77	737	296	259	
2014 年漁期 (2014 年再評価)	Frec1	0.71	487	184	161	

2013、2014年とも、TAC設定の根拠となったシナリオについて行った。 2013年漁期漁獲量は推定値。

昨年度評価と比較すると、今年度評価において追加された 2013 年の 2 歳魚以上の資源密度指数がやや低い値であったため、資源計算の結果、2010・2011 年の加入量が下方修正された。さらに、昨年度評価では予測値であった 2013 年の加入量が、2013 年の00歳魚指標値が低い値であったため、今年度評価において大幅に下方修正された。後者が主な要因となって、2014 年再評価における 2013・2014 年漁期資源量および ABCが、それぞれ 2013 年再評価および 2013 年当初評価よりも大幅に下方修正された。

資源評価において、中国漁船による漁獲の影響を考慮できていないことが、再評価による資源量および ABC の変化が大きい一因となっている可能性がある。

^{*2013} 年当初・再評価および 2014 年再評価の結果、親魚量が Blimit を下回り、資源を回復させる必要があるため、2013・2014 年再評価における管理基準 Fmed は ABC シナリオとはならない。

6. ABC 以外の管理方策の提言

対馬暖流域のマサバは、韓国、中国、台湾によっても漁獲されている。特に、東シナ海において数百隻の虎網と呼ばれる中国漁船が操業しているとされており、当該資源に大きな影響を与えているものと想定されるが、中国の漁獲量および努力量の具体的な数値が得られていないため、資源評価においてそれらの影響を考慮できていない。資源評価、資源管理に当たっては、漁獲量、漁獲努力量等の情報を各国間で共有することが必要である。

若齢魚への漁獲圧を緩和することの効果を見るために、他年齢の F は Fcurrent (=Fave3-yr)と同じで、0 歳魚の F のみを 2015 年より削減した場合の、2015~2019 年の漁獲量および親魚量の予測値を求めた (表 5)。再生産成功率が 1990~2012 年の中央値で一定(親魚量が 35 万トンを超えた場合は加入量 24 億尾で一定)の条件のもとで期待される漁獲量は、0 歳魚の F の削減率が大きいほど管理を開始する 2015 年には減少するが、2017 年には削減率にかかわらず同程度となり、2019 年には削減率を大きくするほど増加した(図 22)。一方、2019 年の親魚量は削減率を大きくするほど増加した。

7. 引用文献

- Limbong, D., K. Hayashi and Y. Matsumiya (1988) Length cohort analysis of common mackerel *Scomber japonicus*, Tsushima Warm Current stock. Bull. Seikai Reg. Fish. Res. Lab., 66, 119-133.
- Shiraishi, T., K. Okamoto, M. Yoneda, T. Sakai, S. Ohshimo, S. Onoe, A. Yamaguchi and M. Matsuyama (2008) Age validation, growth and annual reproductive cycle of chub mackerel *Scomber japonicus* off the waters of northern Kyushu and in the East China Sea. Fish. Sci., 74, 947-954.
- Yukami, R., S. Oshimo, M. Yoda and Y. Hiyama (2009) Estimation of the spawning grounds of chub mackerel *Scomber japonicus* and spotted mackerel *Scomber australasicus* in the East China Sea based on catch statistics and biometric data. Fish. Sci., 75, 167-174.

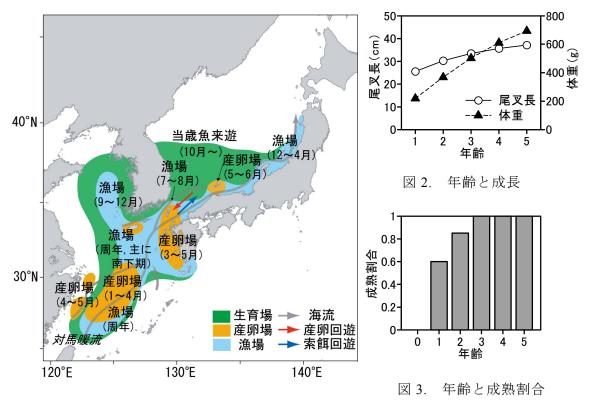


図1. マサバ対馬暖流系群の分布・回遊および生活史と漁場形成模式図

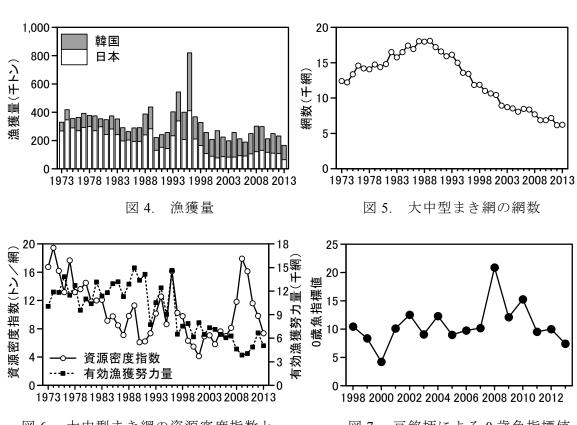


図 6. 大中型まき網の資源密度指数と 有効漁獲努力量

図 7. 豆銘柄による 0 歳魚指標値

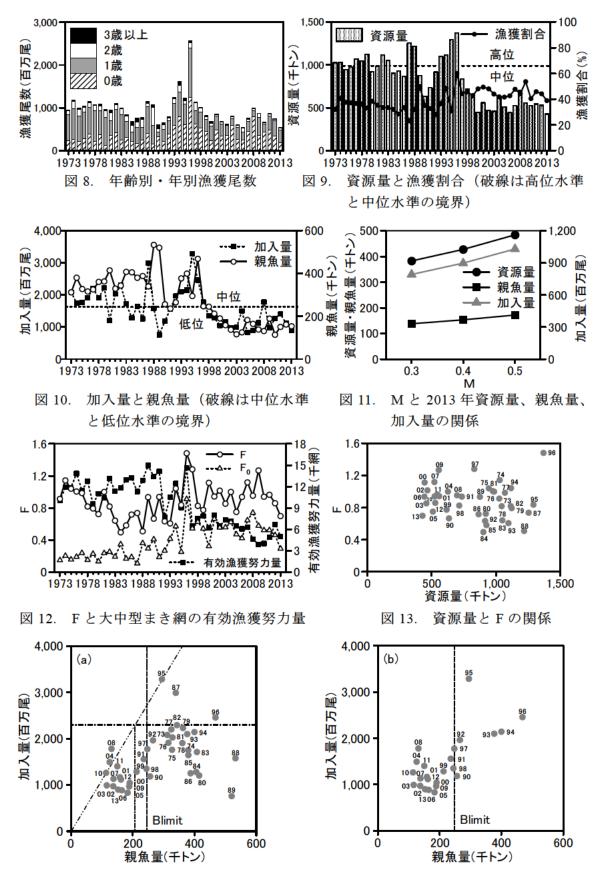


図 14. 親魚量と加入量の関係 (a:1973~2013 年、b:1990~2013 年、破線は Blimit (1997 年親魚量) を示す)

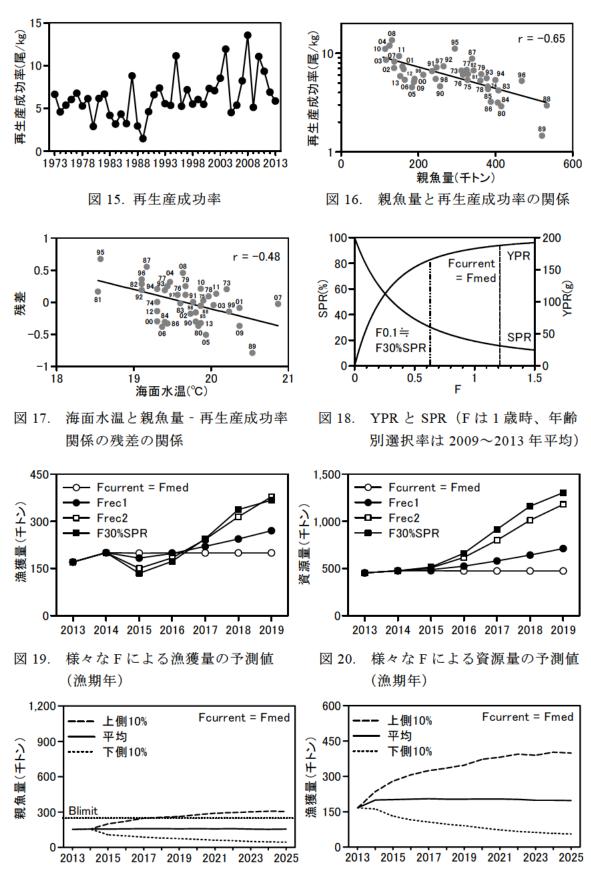


図 21. RPS の変動を考慮したシミュレーション結果 (暦年、左列:親魚量、右列:漁 獲量、左列の破線は Blimit を示す)

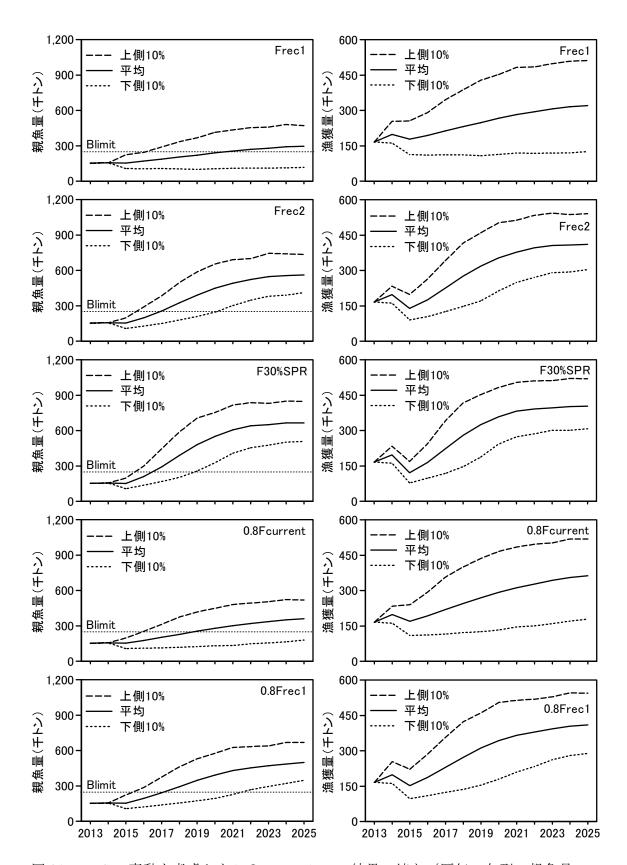


図 21. RPS の変動を考慮したシミュレーション結果の続き(暦年、左列:親魚量、 右列:漁獲量、左列の破線は Blimit を示す)

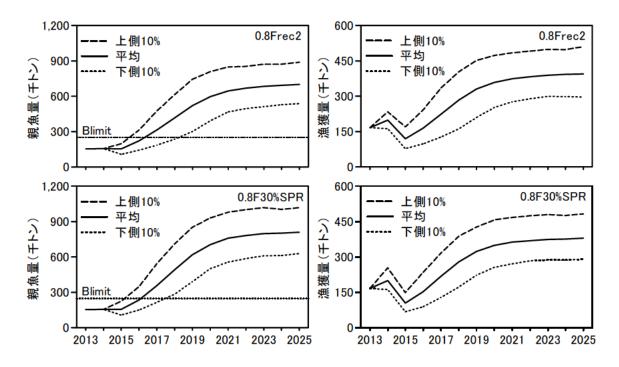


図 21. RPS の変動を考慮したシミュレーション結果の続き (暦年、左列:親魚量、右列:漁獲量、左列の破線は Blimit を示す)

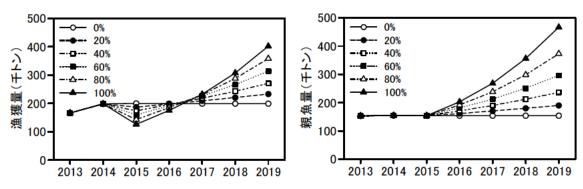


図 22. 0歳 F のみ削減した場合の漁獲量と親魚量の予測値(暦年)

表 1. 大中型まき網のマサバ漁獲量と、大中型まき網以外の漁業種の府県別マサバ漁獲量 (トン)

	大中まき	鹿児島	熊本	長崎	佐賀	福岡	山口	島根	鳥取
1973	215,160	966	942	2,414	34	764	1,911	38,598	9
1974	295,856	746	575	1,716	17	676	2,821	33,423	487
1975	237,859	1,361	828	2,132	14	662	1,619	38,432	212
1976	215,601	1,789	889	2,138	24	332	772	36,709	868
1977	250,593	1,749	863	3,647	41	674	1,338	21,241	247
1978	257,417	959	1,197	9,622	51	648	587	18,498	262
1979	212,769	2,542	1,093	7,102	106	705	1,069	38,385	118
1980	255,753	2,100	623	4,595	84	617	1,378	25,388	171
1981	203,333	2,740	2,106	7,098	140	549	1,477	19,952	260
1982	233,390	2,848	2,883	6,753	182	1,016	2,094	25,179	630
1983	197,112	2,863	1,268	5,590	266	1,440	2,235	24,158	377
1984	150,995	2,952	1,308	5,063	77	789	2,150	28,426	24
1985	152,021	3,853	2,784	12,803	42	743	2,957	21,189	233
1986	144,646	2,082	551	4,902	107	1,060	1,778	30,167	893
1987	124,383	2,307	2,358	25,887	370	1,623	2,863	25,006	266
1988	158,964	1,782	1,050	10,914	316	1,409	3,738	52,260	255
1989	213,583	1,524	1,019	7,711	613	1,625	1,485	47,890	13
1990	104,467	696	254	3,490	75	798	4,035	14,554	21
1991	111,700	867	1,454	4,227	65	571	6,687	25,152	3
1992	111,697	1,208	1,242	4,849	163	883	3,639	17,885	0
1993	175,995	2,240	1,457	10,058	489	3,518	3,202	33,375	5
1994	265,917	1,143	610	8,742	452	2,453	5,394	44,236	6
1995	154,712	1,051	1,933	9,467	187	1,483	5,683	28,748	2
1996	358,199	1,742	2,106	9,232	149	1,814	5,244	26,246	0
1997	173,610	2,297	2,748	11,288	275	786	3,900	12,204	11
1998	125,813	1,137	472	7,321	152	1,194	6,260	18,756	11
1999	79,681	1,372	671	8,745	149	1,373	2,713	10,555	12
2000	65,284	1,400	286	6,046	70	519	4,649	7,797	9
2001	54,132	1,157	50	7,580	145	1,142	3,602	7,824	8
2002	62,323	345	76	7,822	25	988	3,360	9,877	5
2003	62,440	1,135	7	8,046	11	1,177	939	7,850	0
2004	58,008	959	131	14,251	37	953	319	6,648	0
2005	61,858	2,331	117	10,843	20	879	928	10,252	1
2006	55,971	2,326	125	13,799	231	962	1,579	11,929	12
2007	71,649	1,771	282	12,065	51	2,353	1,728	13,451	2
2008	82,358	2,793	313	13,478	146	743	1,606	16,412	4
2009	92,412	1,744	59	14,416	13	578	2,005	17,123	5
2010	89,528	2,476	126	11,666	83	844	1,416	9,000	7
2011	62,842	4,164	290	19,802	19	1,282	1,528	15,684	2
2012	70,195	2,515	108	14,034	69	860	818	14,772	75
2013	41,032	2,172	117	9,084	45	65	557	6,818	114

表 1. 大中型まき網のマサバ漁獲量と、大中型まき網以外の漁業種の府県別マサバ漁獲量 (トン) の続き

			/L C						
	兵庫	京都	福井	石川	富山	新潟	山形	秋田	合計
1973	340	1,235	2,252	1,254	539	2,039	10	84	268,551
1974	1,486	477	2,520	3,172	1,205	1,500	6	144	346,826
1975	279	130	1,937	1,916	519	1,881	5	147	289,932
1976	678	169	2,070	3,356	1,120	2,041	2	227	268,787
1977	1,725	80	1,481	3,646	1,689	2,494	9	233	291,750
1978	1,676	61	979	3,415	1,419	1,495	0	153	298,439
1979	377	503	1,235	1,816	465	1,225	7	352	269,867
1980	43	295	894	2,492	1,000	1,446	7	215	297,101
1981	650	153	903	2,665	1,010	405	1	101	243,544
1982	1,772	95	791	2,579	402	603	1	140	281,358
1983	942	97	2,045	2,406	330	1,054	3	79	242,265
1984	557	106	1,504	2,224	239	905	6	204	197,530
1985	393	333	2,199	2,988	223	799	11	98	203,670
1986	383	93	1,164	3,382	465	1,059	15	110	192,858
1987	722	100	1,984	4,920	207	622	5	78	193,701
1988	369	140	2,179	5,408	316	838	4	102	240,043
1989	474	692	1,340	3,678	216	638	7	73	282,580
1990	187	301	494	1,510	134	184	0	29	131,228
1991	69	146	390	1,233	172	216	0	37	152,991
1992	70	120	190	1,047	230	140	0	24	143,385
1993	76	447	835	1,916	665	249	2	26	234,555
1994	746	632	1,334	5,180	1,357	498	3	50	338,751
1995	373	388	478	2,237	1,039	250	0	48	208,078
1996	283	298	516	4,255	764	335	2	31	411,217
1997	54	409	405	1,802	509	280	5	37	210,618
1998	10	472	183	1,257	1,306	144	4	32	164,524
1999	167	294	409	564	842	337	3	34	107,839
2000	113	409	265	1,028	1,134	178	1	59	89,249
2001	2	202	147	990	319	144	1	68	77,514
2002	6	276	151	630	117	85	1	33	86,121
2003	24	363	164	765	192	102	0	4	83,219
2004	2	180	51	1,144	525	112	6	51	83,377
2005	81	88	146	3,665	390	193	7	70	91,870
2006	35	1,399	602	878	348	232	27	58	90,514
2007	10	348	258	1,714	310	338	11	43	106,384
2008	57	279	188	1,316	764	545	16	53	121,073
2009	16	306	142	984	365	344	5	44	130,559
2010	14	86	199	1,368	495	339	4	26	117,678
2011	26	275	164	3,212	1,004	382	14	109	110,798
2012	18	53	162	2,870	1,193	283	1	23	108,048
2013	7	146	137	2,826	994	246	4	28	64,391

表 2. 漁獲量とコホート計算結果

	シカ. X社 :	ハ· 日 <i>(</i> イ)	1 H1 31 /1		[<u></u>
暦年		量(千)		資源量	親魚量	加入量		再生産成功率
	日本	韓国	計	(千トン)	(千トン)	(百万尾)	(%)	(尾/kg)
1973	269	61	330	1,026	312	2,078	32	6.667
1974	347	72	419	1,029	380	1,749	41	4.608
1975	290	65	355	946	327	1,759	38	5.373
1976	269	95	364	976	316	1,911	37	6.052
1977	292	101	393	1,070	325	2,202	37	6.777
1978	298	79	378	1,044	360	1,906	36	5.286
1979	270	104	374	1,123	363	2,229	33	6.144
1980	297	57	354	921	415	1,203	38	2.900
1981	244	105	348	985	329	2,026	35	6.162
1982	281	93	374	1,116	343	2,295	34	6.684
1983	242	110	352	1,050	408	1,714	34	4.202
1984	198	93	291	902	406	1,283	32	3.163
1985	204	60	264	926	380	1,647	28	4.332
1986	193	97	290	866	388	1,252	33	3.229
1987	194	98	292	1,255	339	2,992	23	8.816
1988	240	149	389	1,219	533	1,576	32	2.957
1989	283	154	437	876	521	762	50	1.463
1990	131	91	222	636	256	1,187	35	4.631
1991	153	89	242	735	236	1,559	33	6.616
1992	143	114	258	917	265	1,963	28	7.397
1993	235	168	403	1,098	377	2,100	37	5.570
1994	339	205	544	1,118	400	2,145	49	5.366
1995	208	192	400	1,292	295	3,287	31	11.152
1996	411	410	821	1,370	468	2,456	60	5.247
1997	211	158	368	832	247	1,775	44	7.183
1998	165	163	328	715	245	1,349	46	5.507
1999	108	157	265	617	213	1,286	43	6.048
2000	89	126	215	446	190	1,046	48	5.490
2001	78	199	277	559	159	1,166	50	7.341
2002	86	139	225	467	137	972	48	7.076
2003	83	119	202	459	116	991	44	8.539
2004	83	178	262	627	125	1,497	42	11.934
2005	92	120	212	509	183	830	42	4.529
2006	91	99	189	443	165	887	43	5.388
2007	106	143	249	522	138	1,134	48	8.233
2008	121	187	308	697	131	1,782	44	13.567
2009	131	168	298	556	189	968	54	5.126
2010	118	94	212	523	114	1,265	41	11.070
2011	111	139	250	543	150	1,403	46	9.359
2012	108	125	233	528	162	1,119	44	6.911
2013	64	102	167	428	153	898	39	5.863

表 3. マサバ対馬暖流系群のコホート計算結果(暦年)

年齢	漁獲	漁獲尾数 (百万尾)				漁獲重量 (千トン)				漁獲係数 F			
年	0	1	2	3+	0	1	2	3+	0	1	2	3+	
1973	240	598	97	19	64	208	46	12	0.15	1.03	1.23	1.23	
1974	267	706	179	26	71	245	86	17	0.20	1.17	1.60	1.60	
1975	211	590	161	26	56	205	77	17	0.16	1.27	1.37	1.37	
1976	275	626	112	31	73	217	54	20	0.19	1.28	1.28	1.28	
1977	389	624	116	27	103	217	55	17	0.24	1.17	1.27	1.27	
1978	222	720	113	22	59	250	54	14	0.15	1.28	0.92	0.92	
1979	376	552	119	39	100	192	57	25	0.23	0.90	1.03	1.03	
1980	124	660	146	34	33	229	70	22	0.13	1.05	0.86	0.86	
1981	352	350	184	69	94	122	88	45	0.23	0.88	1.44	1.44	
1982	424	539	110	34	113	187	53	22	0.25	0.90	1.06	1.06	
1983	249	594	130	27	66	206	63	17	0.19	0.88	0.75	0.75	
1984	313	379	109	37	83	132	52	24	0.35	0.64	0.50	0.50	
1985	212	230	153	83	56	80	73	54	0.17	0.60	0.78	0.78	
1986	177	369	123	86	47	128	59	56	0.19	0.64	1.03	1.03	
1987	252	296	185	51	67	103	89	33	0.11	0.70	1.07	1.07	
1988	399	631	84	35	106	219	40	23	0.36	0.54	0.57	0.57	
1989	162	433	409	73	43	151	196	47	0.30	1.17	1.14	1.14	
1990	332	109	79	91	88	38	38	59	0.41	0.42	0.92	0.92	
1991	219	282	104	55	58	98	50	35	0.19	0.99	1.29	1.29	
1992	385	317	64	23	102	110	31	15	0.27	0.57	0.85	0.85	
1993	595	509	117	18	158	177	56	12	0.41	0.91	0.55	0.55	
1994	786	587	158	86	209	204	76	55	0.57	1.32	1.14	1.14	
1995	611	477	87	47	162	166	42	30	0.25	1.16	0.96	0.96	
1996	1,246	1,154	122	47	331	401	59	30	0.91	1.51	1.75	1.75	
1997	626	305	187	20	169	103	84	12	0.55	0.79	1.90	1.90	
1998	527	379	96	13	140	133	46	8	0.62	1.04	0.82	0.82	
1999	452	276	71	30	114	97	35	19	0.54	1.10	0.73	0.73	
2000	241	333	68	48	42	111	33	29	0.32	1.47	1.33	1.33	
2001	476	336	37	15	132	116	17	11	0.66	1.46	0.83	0.83	
2002	348	284	40	16	96	99	19	11	0.56	1.68	0.92	0.92	
2003	356	230	23	14	104	79	11	9	0.56	1.26	0.80	0.80	
2004	584	164	45	15	172	59	20	10	0.62	0.71	1.33	1.33	
2005	262	280	58	8	75	103	29	5	0.47	0.95	0.79	0.79	
2006	255	188	82	25	63	66	44	17	0.42	1.01	1.16	1.16	
2007	454	231	53	24	131	78 52	25	16	0.65	1.18	1.33	1.33	
2008	787	152	49	13	223	53	24	9	0.74	0.60	1.24	1.24	
2009	356	419	92	13	102	145	44	7	0.58	1.85	1.32	1.32	
2010	432	193	35	17	121	64	16	10	0.52	0.97	1.13	1.13	
2011	480	334	48	10	109	112	22	7	0.52	1.47	0.93	0.93	
2012	346	355	37	14	88	118	17	9	0.46	1.35	0.81	0.81	
2013	190	297	37	12	44	98	17	8	0.29	1.31	0.60	0.60	

表 3. マサバ対馬暖流系群のコホート計算結果(暦年)の続き

年齢		平均体	重 (g)				(百万)	<u>- / - / / / / / / / / / / / / / / / / /</u>	資源量(千トン)			
年\	0	1	2	3+	0	1	2	3+	0	1	2	3+
1973	266	348	479	645	2,078	1,089	160	31	552	378	76	20
1974	266	348	479	645	1	1,199	259	37	465	417	124	24
1975	266	348	479	645	1,759	957	250	40	467	333	120	26
1976	266	348	479	645	1,911	1,008	181	49	507	350	87	32
1977	266	348	479	645	2,202	1,059	188	43	585	368	90	28
1978	266	348	479	645	1,906	1,162	221	44	506	404	106	28
1979	266	348	479	645	2,229	1,098	217	71	592	382	104	46
1980	266	348	479	645	1,203	1,191	299	69	319	414	143	45
1981	266	348	479	645	2,026	706	280	105	538	246	134	68
1982	266	348	479	645	2,295	1,074	197	61	609	373	94	39
1983	266	348	479	645	1,714	1,197	294	60	455	416	141	39
1984	266	348	479	645	1,283	947	333	112	341	329	160	73
1985	266	348	479	645	1,647	609	333	182	437	212	160	117
1986	266	348	479	645	1,252	932	224	158	333	324	107	102
1987	266	348	479	645	2,992	697	331	92	795	242	159	59
1988	266	348	479	645	1,576	1,802	232	97	418	626	111	63
1989	266	348	479	645	762	736	703	125	202	256	337	81
1990	266	348	479	645	1,187	380	154	178	315	132	74	115
1991	266	348	479	645	1,559	529	167	88	414	184	80	57
1992	266	348	479	645	1,963	868	132	47	521	302	63	31
1993	266	348	479	645	2,100	1,006	329	52	558	350	158	33
1994	266	348	479	645	2,145	930	272	147	570	323	130	95
1995	266	348	479	645	3,287	811	166	90	873	282	80	58
1996	266	348	479	645	2,456	1,711	170	65	652	595	81	42
1997	270	338	447	615	1,775	663	252	27	479	224	113	17
1998	266	351	477	631	1,349	689	202	28	359	242	96	18
1999	252	352	488	624	1,286	484	164	68	324	170	80	42
2000	173	334	481	613	1,046	501	107	75	181	168	52	46
2001	278	345	474	699	1,166	507	77	32	324	175	37	23
2002	276	348	481	653	972	402	79 5 0	32	268	140	38	21
2003	291	343	456	655	991	374	50	30	288	128	23	20
2004	295	360	455	654	1,497	380	71	24	442	137	32	16
2005	286	368	505	638	830	538	125	17	237	198	63	11
2006	247	349	530	672	887	347	140	43	219	121	74	29
2007	288	336	474	646	1,134	390	84	39	326	131	40	25
2008	283	350	488	654	1,782	399	81	22	504	139	39	14
2009	287	346	475	572	968	570	146	20	278	197	69	11
2010	281	334	456	604	1,265	364	60	30	356	122	27	18
2011	228	334	452	692	1,403	503	93	19	320	168	42	13
2012	256	334	470	647	1,119	557	78 07	30	286	186	37	19
2013	229	330	468	657	898	473	97	32	205	156	46	21

表 4. 2014年以降の資源尾数等(暦年)

Fcurrent (=Fave3-yr=Fmed)、Frec1、Frec2、F30%SPR で漁獲した場合の 2014~2019 年の年齢別漁獲係数、資源尾数、資源量、親魚量、漁獲尾数、漁獲量。体重(g) は、0 歳=238、1 歳=333、2 歳=464、3 歳以上=665 (2011~2013 年平均体重)。

Fcurrent=Fmed

年齢別漁獲係数

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	0.43	0.43	0.43	0.43	0.43	0.43
1歳	1.21	1.21	1.21	1.21	1.21	1.21
2 歳	0.86	0.86	0.86	0.86	0.86	0.86
3歳以上	0.86	0.86	0.86	0.86	0.86	0.86
平均	0.84	0.84	0.84	0.84	0.84	0.84

年齢別資源尾数(百万尾)

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	1,071	1,064	1,062	1,063	1,063	1,063
1歳	449	468	465	464	464	464
2 歳	85	90	94	93	93	93
3歳以上	48	38	36	37	37	37
計	1,653	1,659	1,657	1,657	1,657	1,657

年齢別資源量(千トン)

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	254	253	252	252	252	252
1歳	149	156	155	154	154	154
2 歳	40	42	43	43	43	43
3歳以上	32	25	24	24	24	24
資源量	475	475	474	475	475	474
親魚量	155	154	154	154	154	154

年齡別漁獲尾数(百万尾)

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	312	310	309	309	309	309
1歳	270	281	279	279	279	279
2 歳	42	44	46	46	46	46
3歳以上	23	18	18	18	18	18
計	647	653	652	652	652	652

	× = \ \ \ \	1 + /				
年齢\年	2014	2015	2016	2017	2018	2019
0 歳	74	74	73	73	73	73
1歳	90	94	93	93	93	93
2 歳	19	20	21	21	21	21
3歳以上	16	12	12	12	12	12
計	199	200	199	199	199	199

表 4. 2014年以降の資源尾数等(暦年)の続き

Frec1

年齢別漁獲係数

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	0.43	0.36	0.36	0.36	0.36	0.36
1歳	1.21	1.03	1.03	1.03	1.03	1.03
2歳	0.86	0.73	0.73	0.73	0.73	0.73
3歳以上	0.86	0.73	0.73	0.73	0.73	0.73
平均	0.84	0.71	0.71	0.71	0.71	0.71

年齢別資源尾数(百万尾)

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	1,071	1,064	1,179	1,309	1,449	1,606
1歳	449	468	495	549	610	675
2歳	85	90	112	119	132	146
3歳以上	48	38	41	49	54	60
計	1,653	1,659	1,827	2,026	2,245	2,487

年齢別資源量(千トン)

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	254	253	280	311	344	381
1歳	149	156	165	183	203	225
2 歳	40	42	52	55	61	68
3歳以上	32	25	27	33	36	40
資源量	475	475	524	582	644	714
親魚量	155	154	171	189	210	232

年齡別漁獲尾数(百万尾)

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	312	271	300	333	369	409
1歳	270	256	271	300	333	369
2 歳	42	39	49	52	58	64
3歳以上	23	17	18	22	24	26
計	647	582	638	707	784	868

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	74	64	71	79	88	97
1歳	90	85	90	100	111	123
2 歳	19	18	23	24	27	30
3歳以上	16	11	12	14	16	17
計	199	179	196	218	241	267

表 4. 2014年以降の資源尾数等(暦年)の続き

Frec2

年齢別漁獲係数

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	0.43	0.27	0.27	0.27	0.27	0.27
1歳	1.21	0.75	0.75	0.75	0.75	0.75
2歳	0.86	0.54	0.54	0.54	0.54	0.54
3歳以上	0.86	0.54	0.54	0.54	0.54	0.54
平均	0.84	0.52	0.52	0.52	0.52	0.52

年齡別資源尾数(百万尾)

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	1,071	1,064	1,389	1,816	2,359	2,419
1歳	449	468	547	714	934	1,213
2 歳	85	90	148	173	226	296
3歳以上	48	38	50	78	99	128
 計	1,653	1,659	2,134	2,781	3,617	4,055

年齢別資源量(千トン)

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	254	253	330	431	560	575
1歳	149	156	182	238	311	403
2 歳	40	42	69	80	105	137
3歳以上	32	25	33	52	66	85
資源量	475	475	614	801	1,042	1,200
親魚量	155	154	201	263	341	444

年齡別漁獲尾数(百万尾)

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	312	206	269	352	457	469
1歳	270	208	243	318	415	540
2 歳	42	31	52	60	79	103
3歳以上	23	13	17	27	34	44
計	647	459	581	757	985	1,156

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	74	49	64	84	109	111
1歳	90	69	81	106	138	180
2 歳	19	15	24	28	37	48
3歳以上	16	9	12	18	23	30
計	199	141	180	235	306	368

表 4. 2014年以降の資源尾数等(暦年)の続き

F30%SPR

年齢別漁獲係数

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	0.43	0.22	0.22	0.22	0.22	0.22
1歳	1.21	0.63	0.63	0.63	0.63	0.63
2 歳	0.86	0.45	0.45	0.45	0.45	0.45
3歳以上	0.86	0.45	0.45	0.45	0.45	0.45
平均	0.84	0.44	0.44	0.44	0.44	0.44

年齢別資源尾数(百万尾)

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	1,071	1,064	1,488	2,082	2,419	2,419
1歳	449	468	569	797	1,114	1,295
2歳	85	90	166	202	283	396
3歳以上	48	38	54	94	126	174
計	1,653	1,659	2,278	3,175	3,942	4,284

年齢別資源量(千トン)

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	254	253	354	495	575	575
1歳	149	156	189	265	371	431
2 歳	40	42	77	94	131	184
3歳以上	32	25	36	62	84	116
資源量	475	475	656	916	1,161	1,305
親魚量	155	154	215	301	418	530

年齡別漁獲尾数(百万尾)

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	312	178	249	348	405	405
1歳	270	185	225	315	441	512
2 歳	42	27	51	62	86	121
3歳以上	23	11	17	29	38	53
計	647	402	541	754	970	1,091

年齢\年	2014	2015	2016	2017	2018	2019
0 歳	74	42	59	83	96	96
1歳	90	62	75	105	147	170
2 歳	19	13	24	29	40	56
3歳以上	16	8	11	19	26	35
計	199	124	169	235	308	358

表 5. 0 歳魚の漁獲係数削減の効果 (暦年)

削減率		0%	20%	40%	60%	80%	100%
	0 歳	0.43	0.34	0.26	0.17	0.09	0.00
Е	1歳	1.21	1.21	1.21	1.21	1.21	1.21
F	2 歳	0.86	0.86	0.86	0.86	0.86	0.86
_	3 歳以上	0.86	0.86	0.86	0.86	0.86	0.86
2019 年漁獲量(千トン)		199	233	271	314	358	403
2019 年親魚量(千トン)		154	190	237	296	373	467

補足資料1 資源評価の流れ

2013年までの年齢別・年 年齢別・年別漁獲尾数、資源調査については補足資料2、3 別漁獲尾数·資源量指数 チューニングVPA (具体的な方法は補足資料2)、 自然死亡係数は0.4を仮定 2013年までの年齢別・年 別資源尾数 年齢別・年別漁獲係数 2014年への前進計算 2014年の1歳魚以上の 2014年の新規加入量の仮定 年齢別資源尾数 (将来予測における2014年の親魚量と 1990~2012年のRPS中央値から算出) 2015年への前進計算、2014年のFはFcurrentを仮定 2015年以降の年齢別・ 2015年以降の新規加入量の仮定 年別資源尾数・親魚量 (将来予測における年々の親魚量と 1990~2012年のRPS中央値から算出) 漁獲シナリオとの対応 2015年漁期ABC·算定漁獲量

補足資料 2 資源計算方法

1. コホート計算

マサバの年齢別・年別漁獲尾数を推定し、コホート計算によって資源尾数を計算した。2013年の漁獲物平均尾叉長と体重、及び資源計算に用いた成熟割合は以下のとおり。年齢3+は3歳以上を表す。自然死亡係数 M は 0.4 と仮定した(Limbong et al. 1988)。

年齢	0	1	2	3+
尾叉長 (cm)	25.5	28.7	32.2	35.9
体重 (g)	229	330	468	657
成熟割合 (%)	0	60	85	100

年齢別・年別漁獲尾数は、東シナ海・日本海における大中型まき網漁業の銘柄別漁獲量と九州主要港における入り数別漁獲量、及び沿岸域で漁獲されたマサバの体長組成から推定した(補注 2)。1973~2013年の年齢別・年別漁獲尾数(1月~12月を1年とする)を日本の漁獲量について推定し、日本+韓国の漁獲量で引き伸ばした。韓国のさば類漁獲量におけるマサバが占める割合は、2007年以前については日本の大中型まき網漁船の韓国水域内での割合と同じとした。2008年以降については、韓国のマサバ・ゴマサバそれぞれの漁獲量が公表されているので、韓国のマサバの漁獲量の値をそのまま用いた。ただし2009年については、韓国のゴマサバの漁獲量の値が異常に高く、値の信頼性が低いことから、2007年以前と同じ方法で算出した。中国の漁獲については考慮していない。

年齢別資源尾数の計算にはコホート計算を用い、最高年齢群 3 歳以上(3+)と 2 歳の各年の漁獲係数 F は等しいとした。

$$N_{a+1,y+1} = N_{a,y} \exp(-F_{a,y} - M)$$
 (1)

$$N_{3+,y+1} = N_{3+,y} \exp(-F_{3+,y} - M) + N_{2,y} \exp(-F_{2,y} - M)$$
 (2)

$$C_{a,y} = N_{a,y} \frac{F_{a,y}}{F_{a,y} + M} (1 - \exp(-F_{a,y} - M))$$
(3)

$$F_{3+,y} = F_{2,y} \tag{4}$$

ここで、N は資源尾数、C は漁獲尾数、a は年齢 (0~3+歳)、y は年。F の計算は、平松(内部資料)が示した、石岡・岸田(1985)の反復式を使う方法によった(依田ら 2014)。最近年 (2013 年) の 0、1、2 歳の F を、大中型まき網漁業の年齢別資源密度指数 (一網当り漁獲量の有漁漁区平均、1~3+歳)及び 0 歳魚指標値の変動傾向と、各年の年齢別資源量の変動傾向が最も合うように決めた。合わせる期間は、ゴマサバ東シナ海系

群と同じく 2003~2013 年とした。

最小
$$\sum_{a=1}^{3} \sum_{y=2003}^{2013} \{ \ln(q_{1,a}B_{a,y}) - \ln(CPUE_{a,y}) \}^2 + \sum_{y=2003}^{2013} \{ \ln(q_2B_{0,y}) - \ln(I_{0,y}) \}^2$$
 (5)

$$q_{1,a} = \left(\frac{\prod_{y=2003}^{2013} CPUE_{a,y}}{\prod_{y=2003}^{2013} B_{a,y}}\right)^{\frac{1}{11}}, q_2 = \left(\frac{\prod_{y=2003}^{2013} I_{0,y}}{\prod_{y=2003}^{2013} B_{0,y}}\right)^{\frac{1}{11}}$$
(6)

ここで、B は資源量、 I_0 は 0 歳魚の指標値(補注 3)、CPUE は大中型まき網漁業の 1 歳、2 歳と 3 歳以上に相当する銘柄の、 $1\sim5$ 月と $9\sim12$ 月について求めた年齢別資源密度指数。(5)式を最小化するような $F_{a,2013}$ を探索的に求めた結果、 $F_{0,2013}=0.29$ 、 $F_{1,2013}=1.31$ 、 $F_{2,2013}=0.60$ 、 $F_{3+,2013}=0.60$ と推定された。資源量は、各年齢の資源尾数に各年齢の漁獲物平均体重を掛け合わせて求めた。

年齢(銘柄)別資源密度指数(トン/網)

	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
1歳	4.91	2.89	4.57	4.10	5.27	4.09	10.18	6.88	9.50	9.50	6.07
2 歳	1.51	1.38	1.80	1.82	1.47	3.18	3.53	2.32	3.08	2.59	1.67
3歳以上	0.92	0.86	0.63	1.38	1.01	1.06	1.23	1.89	1.44	1.28	1.07

補注 1. 漁獲量は以下のように算出した。大中型まき網の漁獲物についてはマサバとゴマサバの比率が報告されるので、東シナ海・日本海で漁獲されたマサバの漁獲量を対馬暖流系群の漁獲量とした。鹿児島~秋田県の農林統計(属人)により、漁業種類別漁獲量のうち大中型まき網以外の漁業種類について加算した。その際、各府県のさば類漁獲量を府県ごとに割合を定めてマサバとゴマサバに振り分けた。マサバの割合を鹿児島県 20%、熊本・長崎県 80%、佐賀・福岡県 90%、山口~福井県 95%、石川県以北 100%とした(表 5)。

補注 2. 年齢別・年別漁獲尾数を以下のように推定した。1992~2013 年は、九州主要港に水揚げされる大中型まき網の漁獲物について、月ごとに定めた各年齢の入り数範囲により入り数別漁獲量から、九州の沿岸漁業及び日本海の漁獲物について、月ごとに定めた各年齢の体長範囲により体長測定データと漁獲量からそれぞれ月別に推定し、1~12月分を足し合わせて年齢別漁獲尾数とした。1991年以前については、1973~2007年の大中型まき網の月別銘柄別漁獲量を各年齢に単純に割り振り、1992~2007年についての上記推定結果との各年齢の比率を求め、その1992~2007年の平均値を使って年齢別・年別漁獲尾数推定値を補正した。銘柄の年齢への振り分けは、7~12月の豆銘

柄を0歳、 $1\sim6$ 月の豆銘柄と $7\sim12$ 月の小銘柄を1歳、 $1\sim6$ 月の小銘柄と $7\sim12$ 月の中銘柄を2歳、 $1\sim6$ 月の中銘柄と全ての大銘柄を3+歳とした。

補注 3. 0 歳魚指標値はそれぞれ 11 月~翌年 1 月の九州主要港に水揚げされる大中型まき網の入り数 54 以上のマサバ漁獲量を正子位置報告数で割った値と、鳥取県境港サバ類豆銘柄まき網 1 か統当たり漁獲量の相乗平均値。ただし、2013 年は境港に水揚げされるマサバの漁期が遅れたため、2013 年のみ 12 月~翌年 2 月の鳥取県境港サバ類豆銘柄まき網 1 か統当たり漁獲量の値を用いた。

年	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
0 歳魚 指標値	9.07	12.32	9.01	9.79	10.20	20.89	12.14	15.26	9.53	9.99	7.42

2. ABC 算定方法

コホート計算は、産卵期と加入時期を考慮して、暦年($1\sim12$ 月)で計算した。漁期年(7 月~翌年 6 月)ABC を計算するために、2013 年以降は半年(0.5 年)ごとに資源尾数と漁獲尾数を求め、2015 年漁期(2015 年 7 月~2016 年 6 月)に対応した ABC を算定した。

$$N_{a_2,y} = N_{a_1,y} \exp(-h_{a_1} F_{a,y} - \frac{M}{2})$$
 (7)

$$N_{a+1_1,y+1} = N_{a_2,y} \exp(-h_{a_2} F_{a,y} - \frac{M}{2})$$
(8)

$$N_{3+1,y} = N_{2,y} \exp(-h_{2}F_{2,y} - \frac{M}{2}) + N_{3+2,y} \exp(-h_{3+2}F_{3+y} - \frac{M}{2})$$
(9)

$$C_{a_1,y} = N_{a_1,y} \frac{h_{a_1} F_{a,y}}{h_{a_1} F_{a,y} + \frac{M}{2}} (1 - \exp(-h_{a_1} F_{a,y} - \frac{M}{2}))$$
(10)

$$C_{a_2,y} = N_{a_2,y} \frac{h_{a_2} F_{a,y}}{h_{a_2} F_{a,y} + \frac{M}{2}} (1 - \exp(-h_{a_2} F_{a,y} - \frac{M}{2}))$$
(11)

ここで、 a_1 は前期($1\sim6$ 月)、 a_2 は後期($7\sim12$ 月)、 h_a は年間の F の半年分の F への年齢別配分率。 H_a は $1\sim6$ 月と $7\sim12$ 月の年齢別漁獲尾数の $2011\sim2013$ 年の平均比率から求めた。漁獲量は、それぞれ前期、後期の各年齢の漁獲尾数に各年齢の漁獲物平均体重($2011\sim2013$ 年の平均)を掛け合わせて求めた。なお、半年ごとの漁獲物平均体重は、暦年計算と半年計算の年間漁獲量のずれが小さくなるように補正したものを用いた。

補足資料 3 調査船調査の結果

(1) 夏季(7~9月) に九州西岸と対馬東海域で行った計量魚探による浮魚類魚群量調査の現存量指標値を以下に示す。マサバとゴマサバを合計した、さば類としての値である。

年	1997	1998	1999	2000	2001	2002	2003	2004	2005
さば類	0.2	2.2	1.6	0.9	0.3	0.3	0.05	1.0	2.7
年	2006	2007	2008	2009	2010	2011	2012	2013	_
さば類	1.7	0.9	8.3	0.8	0.4	0.8	7.8	1.6	

(2) 5~6 月に東シナ海陸棚縁辺部で行った着底トロールを用いた資源量直接推定調査による、0歳魚を主体とする現存量推定値を以下に示す (調査海域面積 138 千 km²、漁獲効率を1とした計算。単位はトン)。なお、本調査は底魚類を対象としたものであり、マサバの分布水深を網羅していないので、得られる現存量推定値は参考程度のものとなる。

年	2000	2001	2002	2003	2004	2005	2006	2007
マサバ	26,100	14,513	4,951	2,715	3,645	1,062	9,363	213
年	2008	2009	2010	2011	2012	2013	2014	
マサバ	22,479	515	12,553	57,162	29,869	257	3,351	

(3) 2000 年からニューストンネット等を用いた新規加入量調査(幼稚魚分布調査) を 2~6 月に東シナ海及び九州沿岸海域で行っている。結果については平成 26 年度マ アジ対馬暖流系群の資源評価報告書補足資料 3 (4) を参照。

引用文献

- 石岡清英・岸田 達 (1985) コホート解析に用いる漁獲方程式の解法とその精度の検討. 南西水研報, 19,111-120.
- Limbong, D., K. Hayashi and Y. Matsumiya (1988) Length cohort analysis of common mackerel *Scomber japonicus*, Tsushima Warm Current stock. Bull. Seikai Reg. Fish. Res. Lab., 66, 119-133.
- 依田真里・由上龍嗣・大下誠二・黒田啓行 (2014) 平成 25 年度マアジ対馬暖流系群の 資源評価.平成 25 年度我が国周辺水域の漁業資源評価,(第一分冊) 水産庁・水産 総合研究センター, pp.105-134.