平成 26 (2014) 年度サワラ東シナ海系群の資源評価

責任担当水研:西海区水産研究所 (髙橋素光、青沼佳方、由上龍嗣)

参 画 機 関:新潟県水産海洋研究所、富山県農林水産総合技術センター水産研究所、

石川県水産総合センター、福井県水産試験場、京都府農林水産技術センター海洋センター、福岡県水産海洋技術センター、佐賀県玄海水産

振興センター、長崎県総合水産試験場

要約

本系群の資源状態について、日本の漁獲量、大中型まき網の CPUE および韓国の漁獲量に基づいて評価した。これらの相乗平均値を資源量の増減を示す資源量指標値と考えると、その値は 1997~2000 年に増加し、その後増減しながら比較的高い水準で推移し、最近 5 年間(2009~2013 年)では増加傾向と判断された。資源水準は、日本と韓国の漁獲量から高位と判断した。2013 年における日本の漁獲量は 12 千トン、韓国の漁獲量は 29 千トンであった。韓国、中国の漁獲量が日本に比べてはるかに多い現状で、日本のみで管理を行っても管理の効果が薄い可能性はあるが、資源水準が高く資源動向も増加傾向にあることから、資源量指標値の変動に合わせて漁獲することが妥当であると判断した。平成 26 年度 ABC 算定規則に基づき、現状の資源水準と最近 3 年間(2011~2013年)における資源量指標値の変動傾向を考慮した漁獲量を ABClimit、それよりやや少なく不確実性を見込んだ漁獲量を ABCtarget とした。なお、下表の ABC と漁獲量は日本漁業に対する値である。

•	****	V > V =	- /-	\\ \dagger \da
	2015年 ABC	資源管理基準	F 値	漁獲割合
ABClimit	145 百トン	1.0 · C2013 · 1.19	_	_
ABCtarget	116 百トン	0.8 · 1.0 · C2013 · 1.19	_	_
年	資源量	漁獲量(百トン)	F 値	漁獲割合
2012	_	92	_	_
2013	_	122	_	

水準:高位 動向:増加

本件資源評価に使用したデータセットは以下のとおり

データセット	基礎情報、関係調査等
漁獲量•資源量指	漁業・養殖業生産統計年報 (農林水産省)
数	主要港水揚量(新潟~長崎(8)府県)
	九州主要港入り数別水揚量(水研セ)
	大中型まき網漁獲成績報告書 (水産庁)
	月別体長組成調査(水研セ、新潟~長崎(8)府県)
	韓国沿近海魚種別総漁獲量年別統計(韓国海洋水産部)

1. まえがき

東シナ海、日本海に生息するサワラは、定置網、大中型まき網およびひき縄などにより漁獲される重要資源である。東シナ海では、日本だけでなく韓国・中国も重要漁獲対象魚としている。日本は、1980年代には東シナ海において主に大中型まき網により多獲していたが、1990年代に入ると漁獲量は急減した。1998年以降、日本海における漁獲量が増加し始め、2000年以降では本系群の漁獲量の半分以上を占めている。韓国は、韓国南岸および済州島周辺で主にまき網および定置網により漁獲しており、その漁獲量は、1990年代後半以降では日本の漁獲量に比べてはるかに多い。中国は、まき網およびトロール等により漁獲するが、漁場等の詳細は不明であり、2005年以降は漁獲量も不明である。韓国・中国が漁獲したサワラの一部が日本へ輸出されている。

2. 生態

(1) 分布·回遊

分布は、東シナ海から黄海、渤海、さらに北海道以南の日本海に及ぶ(図 1)。孟ほか (2001) によると、サワラの産卵場は、福建省沿岸 (3~4月)、黄海沿岸 (5月中旬~6月上旬)、および渤海湾から遼東湾 (5月下旬~6月上旬) に形成される。福建省沿岸で産卵した群は、舟山諸島から揚子江河口に達した後、2群に分かれて北上し、一つは海洋島へ、もう一つは渤海湾から遼東半島へ回遊する。10月以降、水温の低下にともない、渤海、黄海の群は南下し、12月には東シナ海北・中部の越冬場に達する。12月~3月には南下した越冬群の一部が済州島の北西から南にかけて分布する。

1998年以降、日本海におけるサワラの漁獲量が増加している。日本海で漁獲されるサワラは、東シナ海に分布するサワラと同じ系群と考えられ、日本海における漁獲量の増加は、1998年以降における日本海の水温の上昇と深く関係があると考えられる(為石ほか 2005、上田・的場 2009)。また、京都府沿岸では、冬季に漁獲量が減少する傾向にあったが、2005年以降、低水温にもかかわらず冬季にも多獲されるなど、2004年までとは異なる回遊パターンが形成されている可能性がある(井上ほか 2007、戸嶋ほか 2011)。近年における標識放流試験結果から、日本海に分布するサワラは、0~1歳の間日本海に留まり、その分布を日本海北部にまで拡げるが、2歳には南下して産卵場である東シナ海まで回遊すると考えられる(戸嶋ほか 2013)。

(2) 年齢·成長

成長には雌雄差があり、2歳以上において雌は雄に比べ成長が速い(濱崎 1993、図 2)。しかし、この報告は 1980 年代に東シナ海および韓国沿岸域で漁獲されたサンプルを用いたものである。日本海沿岸で漁獲されたサワラの尾叉長組成から判断すると、満1歳で尾叉長 45cm 前後、満2歳で 65cm 前後に成長しており (井上ほか 2007)、1980年代と比べて成長が速いか、海域により成長が異なる可能性がある。寿命は、6歳程度と推定される(濱崎 1993)。

(3) 成熟·産卵

雌雄ともに 1 歳魚の一部が成熟を開始し、2 歳魚以上では大部分が成熟する。東シナ海、黄海のサワラの産卵期は 3~6 月である (濱崎 1993、孟ほか 2001)。京都府沿岸では、雄で尾叉長 40cm 以上、雌で尾叉長 60cm 以上、雌雄ともに 4~6 月に、熟度の高い個体が見られる (井上ほか 2007)。しかし、日本海において産卵可能な状態にまで成熟した個体は僅かであったことから、日本海において再生産する可能性は低いと考えられる (藤原ほか 2013)。

(4) 被捕食関係

生活史を通じて魚食性が非常に強い(Shoji et al. 1997)。

3. 漁業の状況

(1) 漁業の概要

1990年代半ばまで、サワラ東シナ海系群の日本の漁獲量の大半が、東シナ海の大中型まき網によるものであった。しかし 2000年以降では、東シナ海の大中型まき網による漁獲が本系群に対する漁獲全体に占める割合は低くなっている。東シナ海の大中型まき網漁業でサワラが漁獲対象となるのは、12月から翌年4月までの冬季に集中している(阿部 1994)。現在では日本海の定置網による漁獲量が多く、本系群の漁獲量の半分以上を占めている。

(2) 漁獲量の推移

1993 年以前は、東シナ海の大中型まき網による漁獲量が統計に計上されていないため、1993 年以前については、漁業養殖業生産統計年報の漁獲量に大中型まき網による漁獲量をすべて東シナ海区の漁獲量として足したものを、1994 年以降については、漁業養殖業生産統計年報の漁獲量を、本系群の漁獲量として使用する。青森県〜石川県を日本海北区、福井県〜山口県を日本海西区、福岡県〜鹿児島県を東シナ海区とし、漁獲量を海区別に図 3、表 1 に示した。全海区における合計漁獲量は、1984〜1991 年には 2 万トン前後で推移していたが、1992 年以降に減少して 1 万トンを下回る年が続き、1997 年には 822 トンにまで落ち込んだ。1998 年以降、漁獲量は増加し始め、2000年代には 5 千〜14 千トンの範囲で推移し、2013 年は 12,234 トンであった。日本海に

おける漁獲量が全体に占める割合は、1990年代後半から増加し始め、2003年以降は60%以上を維持している。2009年以降、東シナ海区および日本海西区における漁獲が全体に占める割合は増加傾向にあるものの、日本海北区における割合は減少傾向にある(図4)。

大中型まき網によるサワラの漁獲量は、1985年には約43千トンであったが、1992年以降に急減し、1997年には203トンにまで落ち込んだ。1998年以降、大中型まき網による漁獲量は増加し、2000年には3,145トンであったが、その後は増減を繰り返しながら減少傾向を示し、2010年には589トンであった。2011年以降、大中型まき網による漁獲量は増加傾向にあり、2013年の漁獲量は2,154トンであった。

韓国が漁獲するサワラの漁獲量は、1992~1997年は低い値で推移したが、1998年に増加し、それ以降は2~3万トンの水準で比較的安定して推移していた(「漁業生産統計」韓国統計庁)。2007年には、42,199トンと過去最高を記録したが、その後減少傾向に転じ、2013年は29,394トンであった。日本と韓国のサワラの漁獲量の推移を図5に示した。1980年代における韓国の漁獲量は、日本の漁獲量と同程度であったが、1990年代以降における韓国の漁獲量は、日本の漁獲量の3~5倍に達している。

中国が漁獲するサワラの漁獲量は、日本・韓国よりもはるかに多く、1990 年代は 10万トン以上であり、1998 年以降は 50万トン前後で推移していたが、2004 年には 38万トンとやや減少した(FAO 統計 Capture production 1950-2004)。また、2005 年以降の中国の漁獲量については、魚種別漁獲量のサワラの項目が FAO 統計から削除されたため不明である。中国の漁獲量の中にはサワラ以外のサワラ類も含まれている可能性があるが、その程度は不明である。

4. 資源の状態

(1) 資源評価の方法

日本の漁獲量、東シナ海で操業する大中型まき網のサワラの CPUE および韓国の漁獲量の相乗平均値を、資源量の増減を示す資源量指標値と考え、これらの情報に基づいて資源評価を行った。資源量指標値は以下の式で算出される。

資源量指標値
$$_{y}$$
= $\sqrt{C_{Japan,y} \times C_{Korea,y} \times CPUE_{y}}$

ここで、 C_{Japan} は日本の漁獲量(トン)、 C_{Korea} は韓国の漁獲量(トン)、CPUE は東シナ海で操業する大中型まき網のサワラの CPUE (kg/網)、y は年。

大中型まき網により九州主要港に水揚げされたサワラの体重別漁獲尾数は推定できるが、日本の漁獲量に占める大中型まき網の漁獲量の割合は、低い水準にある。また、日本海の定置網により漁獲されたサワラの尾叉長組成も把握できるが、データの得られる期間が短い。さらに、日本よりも韓国と中国の漁獲量がはるかに多く、それらの漁獲物の内容については不明である。このような現状で、年齢別漁獲尾数を基にコホート解析による資源量推定を行っても、信頼性がある値は得られないと判断し、体重

別漁獲尾数および尾叉長組成の経年変化は、参考として図示するにとどめた。

(2) 資源量指標値の推移

東シナ海で操業する大中型まき網によるサワラ全銘柄合計の CPUE は、1997 年の 17 kg /網から 2000 年の 295 kg /網まで急激に増加した後、増減を繰り返しながら 2010 年には 85 kg /網まで減少したが、2013 年には 341 kg /網まで増加した(図 6、表 2)。 銘柄別に見ると、0 および 1 歳魚にあたる小銘柄(体重 1,500 g 以下)が高い割合で漁獲され、2005 年以前では、大銘柄が全体に占める割合が 20%を超える年もあったが、2006 年以降 $1\sim15\%$ と低い割合で推移している。

資源量指標値は 1997 年に最低となった後、2000 年にかけて増加し、その後増減しながら比較的高い水準で推移している(図 7)。最近 5 年間(2009~2013 年)における資源量指標値は、増加傾向にある。

(3) 漁獲物の体長組成

大中型まき網により九州主要港に水揚げされたサワラの体重別漁獲尾数は、1995~2003 年漁期(2003 年漁期とは 2002 年 11 月~2003 年 4 月)において、600g 以下の 0歳魚が大半を占めていたが、2004~2007 年漁期では、601~1,000g の 1 歳魚も 600g 以下の 0 歳魚と同程度の尾数が漁獲された(図 8、表 3)。2009 年漁期以降、1,000g 以下の 0~1 歳魚の漁獲尾数は、増加傾向にある。

2011~2013 年に富山県、福井県、京都府において、主に定置網により水揚げされたサワラの尾叉長組成を図 9 に示す。8~9 月に尾叉長 30~45cm 程度の 0 歳魚の加入が見られ、その群が越年して漁獲されている。さらに、1~5 月には尾叉長 60~75cm のサワラも漁獲されている。定置網による漁獲物には、3 歳以上と考えられる尾叉長 80cm を超える個体の全体に占める割合は少なかった。

(4) 資源の水準・動向

資源の水準は、過去 30 年間 (1984~2013 年) における日本と韓国の漁獲量の最小値と最大値の間を 3 等分した値を、それぞれ低位と中位、中位と高位を区分する基準値として判断した(図 5)。その結果、2013 年の漁獲量は高位と判断した。また、資源量指標値は、2010 年を境に減少傾向から増加傾向に転じているため、最近 5 年間 (2009~2013 年) における資源動向は増加と判断した(図 7)。

5. 資源管理の方策

東シナ海におけるサワラの漁獲量は 1990 年代前半において急激に減少したが、1998 年以降、日本海における漁獲量が急激に増加した。日本海における漁獲量が全体に占める割合は、2003 年以後 60%以上を維持している (図 3)。1998 年は東シナ海および日本海において高水温の年であり、サワラの分布域が東シナ海から日本海に広がったと考えられる。日本海の定置網による漁獲が資源に与える影響は不明であるが、資源水準は高位にあり、資源動向は増加傾向にあるため、資源量指標値の変動に合わせて

漁獲することが妥当であると判断した。

6. 2015 年 ABC の算定

(1) 資源評価のまとめ

資源量指標値は、1997年に最低となった後 2000年にかけて増加し、その後増減しながら比較的高い水準で推移した。最近5年間(2009~2013年)における資源量指標値は、増加傾向にある。資源水準は、日本と韓国の漁獲量から高位と判断した。日本に比べて韓国と中国の漁獲量がはるかに多い現状で、日本のみで資源管理を行っても管理の効果が薄い可能性はあるが、資源水準が高位にあり、資源動向が増加傾向を示していることから、資源量指標値の変動に合わせて漁獲することが妥当であると判断した。

(2) ABC の算定

漁獲量と資源量指標値が分かっているだけで、資源量は推定されていないため、ABC 算定規則 2-1)を適用した。ABC 算定規則に従い、資源量指標値の変動傾向と資源水準の係数を含む以下の式に基づいて ABC を算定した。

ABClimit =
$$\delta_1 \times C2013 \times \gamma_1$$

ABCtarget = ABClimit $\times \alpha$
 $\gamma_1 = (1 + k \times (b/I))$

現状の資源水準は、昨年に続き高位と判断されたため、資源水準に基づく係数 (δ_1) は 1.0 とした。また資源量指標値の変動傾向を示す係数 (γ_1) は、係数(k)を標準値の 1.0 とし、標準期間とされている最近 3 年間($2011\sim2013$ 年)における資源量指標値の傾き b (774.2)と平均値 I (4178.6)に基づいて、1.19 と算定した。 α は標準値の 0.8 とした。なお、ABC とその基礎となる漁獲量は日本漁業に対する値である。

	2015年 ABC	資源管理基準	F値	漁獲割合
ABClimit	145 百トン	1.0 · C2013 · 1.19	_	_
ABCtarget	116 百トン	0.8 · 1.0 · C2013 · 1.19	_	_

(3) ABC の再評価

昨年度評価以降追加されたデータセット	修正・更新された数値
2012 年漁獲量確定値	2012 年漁獲量の確定

評価対象年	管理基準	資源量	ABClimit (百トン)	ABCtarget (百トン)	漁獲量 (百トン)
2013 年(当初)	1.0 · C2011 · 1.02	_	100	80	
2013年(2013年再評価)	1.0 · C2011 · 1.02	_	100	80	
2013年(2014年再評価)	1.0 · C2011 · 1.02	_	100	80	122
2014年(当初)	1.0 · C2012 · 1.14	_	105	84	
2014年(2014年再評価)	1.0 · C2012 · 1.14	_	105	84	

2013 年 (2014 年再評価) は、平成 26 年 7 月 4 日に訂正された ABC 算定のための基本 規則に基づき計算した。2014 年再評価において、2012 年漁獲量を確定値に更新した。

7. ABC 以外の管理方策への提言

東シナ海のサワラは、韓国・中国等によっても漁獲されるため、資源評価、資源管理に当たっては各国間の協力が必要である。

本系群全体に対する我が国の漁獲割合は韓国や中国と比べて低いが、我が国において本系群の漁獲の半分以上を占める日本海のサワラの持続的な利用を図ることは重要である。平成21~23年度において、日本海区水産研究所を中心に中央水産研究所および青森県から長崎県までの府県の16機関によって、日本海で急増したサワラの安定供給と有効利用を目指したプロジェクト研究(農林水産技術会議委託)が実施され、日本海におけるサワラの資源生態と食品原料としての特性の把握、新たな加工食品の開発に関する成果をまとめた「サワラ加工マニュアル」が平成24年3月に出版された。

8. 引用文献

阿部 寧 (1994) 東シナ海のサワラの資源評価の問題点. 西海ブロック漁海況研報, 3, 37-45.

濱崎清一 (1993) 東シナ海・黄海に分布するサワラの年齢と成長. 西海水研研報, 71, 101-110.

井上太郎・和田洋蔵・戸嶋 孝・竹野功璽 (2007) 京都府沿岸で漁獲されるサワラの年 齢および移動について. 京都府立海洋センター研究報告, 29,1-6.

藤原邦浩・佐藤翔太・戸嶋 孝・木所英昭 (2013) 日本海におけるサワラ雌の成熟と産 卵. 京都府農林水産技術センター海洋センター研究報告, 35,13-18.

孟 田湘・大下誠二・李 長松 (2001) サワラ. 東シナ海・黄海主要資源の生物・生態 特性(堀川博史・鄭 元甲・孟 田湘編),西海区水産研究所,203-216.

Shoji, J., T. Kishida and M. Tanaka (1997) Piscivorous habits of Spanish mackerel larvae in the Seto Inland Sea. Fish. Sci., 63, 388-392.

為石日出生・藤井誠二・前林 篤 (2005) 日本海水温のレジームシフトと漁況(サワラ・

- ブリ) との関係. 沿岸海洋研究, 42, 125-131.
- 戸嶋 孝・熊木 豊・井上太郎 (2011) 京都府沿岸におけるサワラ漁獲動向. 京都府農 林水産技術センター海洋センター研究報告, 33,1-6.
- 戸嶋 孝・太田武行・児玉晃治・藤原邦浩・木所英昭 (2013) 漁獲状況および標識放流 試験からみた近年の日本海におけるサワラの分布・移動. 京都府農林水産技術セン ター海洋センター研究報告, 35,1-12.
- 上田 拓・的場達人 (2009) サワラの漁獲量と水温との関係. 福岡県水産海洋技術センター研究報告, 19,69-74.

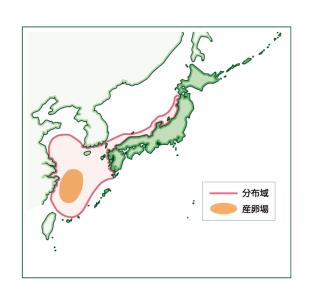


図1. サワラ東シナ海系群の分布・回遊

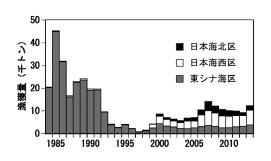


図 2. 年齢と成長

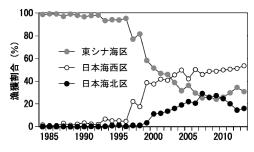


図3. 日本漁船による海区別漁獲量

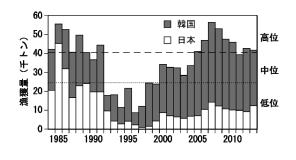


図 4. 海区別漁獲割合

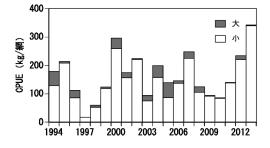


図 5. 日本および韓国の漁獲量

図 6. 東シナ海における大中型ま き網の銘柄別 **CPUE**

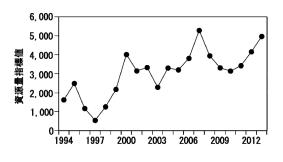


図 7. 資源量指標値の推移

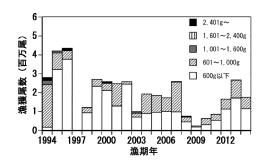


図 8. 九州主要港に水揚げされた サワラの体重別漁獲尾数

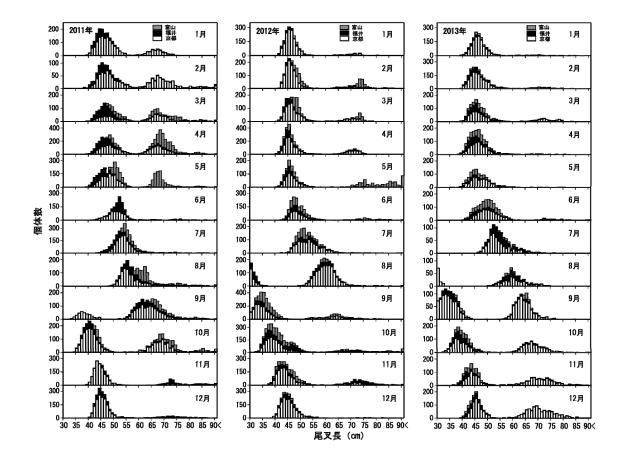


図 9. 2011~2013年に富山県、福井県、京都府に水揚げされたサワラの尾叉長組成

表 1. 日本、韓国および中国におけるサワラの漁獲量(トン)

——	口未治小区	口未治市区	すい土海区	口卡△弘	抽回	
年	日本海北区	日本海西区	東シナ海区	日本合計	韓国	中国
1984	16	282	20,131	20,429	21,603	
1985	30	398	44,734	45,162	10,265	
1986	29	296	31,526	31,851	20,678	
1987	39	479	16,074	16,592	23,947	
1988	5	248	22,567	22,820	26,737	
1989	11	511	23,518	24,040	16,325	148,100
1990	43	626	18,959	19,628	16,905	208,600
1991	52	425	19,121	19,598	24,723	200,600
1992	12	169	9,392	9,573	8,230	146,800
1993	11	271	3,847	4,129	13,927	145,500
1994	27	138	2,579	2,744	8,667	202,800
1995	55	203	3,841	4,099	17,429	226,500
1996	7	100	2,098	2,205	6,419	283,800
1997	9	181	632	822	11,173	340,300
1998	16	257	1,195	1,468	22,809	517,500
1999	139	1,641	2,466	4,246	19,502	565,800
2000	951	3,200	4,397	8,548	25,641	496,600
2001	814	2,918	3,272	7,004	25,513	476,700
2002	852	2,576	2,902	6,330	25,956	506,195
2003	907	2,581	2,201	5,689	22,608	393,807
2004	1,282	3,366	2,138	6,786	26,622	380,634
2005	1,541	2,943	2,538	7,022	33,794	
2006	2,122	5,192	3,039	10,353	36,484	
2007	4,087	6,459	3,558	14,104	42,199	
2008	3,093	5,888	3,138	12,119	40,809	
2009	2,886	5,162	2,547	10,595	36,793	
2010	2,456	4,978	2,590	10,024	35,778	
2011	1,960	4,953	2,908	9,821	29,294	
2012	1,328	4,710	3,148	9,186	33,377	
2013	1,943	6,534	3,757	12,234	29,394	
2013	1,943	0,334	3,/3/	12,234	29,394	

表 2. 東シナ海の大中型まき網によるサワラの銘柄別 CPUE (kg/網)

年	小	大	全体
1994	128	50	178
1995	207	6	213
1996	85	26	111
1997	17	0	17
1998	52	7	59
1999	118	5	123
2000	259	36	295
2001	156	18	174
2002	220	3	223
2003	74	19	93
2004	157	41	198
2005	86	52	138
2006	136	9	145
2007	224	23	247
2008	105	19	124
2009	91	2	93
2010	83	2	85
2011	137	2	139
2012	220	13	233
2013	339	2	341

表 3. 大中型まき網により九州主要港に水揚げされたサワラの体重別漁獲尾数(千尾)

漁期年	600g 以下	601~1,000g	1,001~1,600g	1,601~2,400g	2,401g 以上
1994	167.29	2,253.48	215.84	27.86	120.85
1995	3,210.18	876.76	101.34	6.21	2.27
1996	3,760.97	454.56	39.73	24.78	69.22
1997	3.30	0.00	0.00	0.00	0.00
1998	927.31	272.46	7.04	0.00	0.00
1999	2,334.65	373.30	0.18	0.00	0.00
2000	2,107.45	382.87	6.04	4.06	70.32
2001	1,287.80	1,183.80	0.00	0.14	0.00
2002	2,443.92	130.43	0.00	0.00	0.70
2003	698.84	201.89	71.75	24.69	1.55
2004	875.73	1,044.29	2.25	0.31	0.00
2005	956.86	894.05	0.66	0.00	0.00
2006	990.27	732.80	0.00	4.85	2.36
2007	984.78	1,582.86	0.93	0.24	18.22
2008	444.78	262.64	23.88	13.86	17.63
2009	177.18	52.93	0.00	0.00	0.00
2010	298.24	317.06	1.80	0.00	0.00
2011	527.56	316.75	4.18	0.00	0.41
2012	1,127.50	524.51	4.33	0.00	0.00
2013	1,711.90	944.01	5.52	0.00	0.00
2014	1,136.79	604.42	0.00	0.00	0.00

2014 漁期年は 2013 年 11 月から 2014 年 4 月までを意味する。