平成28(2016)年度ホッコクアカエビ日本海系群の資源評価

責任担当水研:日本海区水産研究所(佐久間啓、養松郁子、上田祐司、藤原邦浩)

参 画 機 関:青森県産業技術センター水産総合研究所、秋田県水産振興センター、山形 県水産試験場、新潟県水産海洋研究所、富山県農林水産総合技術センター 水産研究所、石川県水産総合センター、福井県水産試験場、京都府農林水 産技術センター海洋センター、兵庫県立農林水産技術総合センター但馬水 産技術センター、鳥取県水産試験場

要約

本系群の漁獲量は、1982年の4,155トンをピークに1990年代半ばまで減少したのち、1995年から2010年にかけて概ね2,000~2,200トン台で安定して推移した。その後、漁獲量は2012年にかけて1,500トン台まで落ち込んだものの、以降回復し、2015年には2,549トンとなった。

本系群の資源状態を、本州沿岸および大和堆における沖合底びき網漁業の資源密度指数を指標として判断した。2015年の資源密度指数は本州沿岸、大和堆ともに高位水準にあり、2011~2015年ではいずれも増加傾向にあった。従って、両海域を含めた本系群全体の資源水準を高位、動向を増加と判断した。

本系群に関する 2017 年 ABC を、ABC 算定規則 2-1) に従い、資源量指標値および漁獲量に基づいて算出した。

					Blimit =
	Torget/		漁獲割	2017年	_
管理基準	Target/	F 値		ABC	親魚量
- ·	Limit		合 (%)	(百トン)	5 年後
					(百トン)
1.0・本州沿岸 Cave 3-yr・1.25	Target	_	_	21	_
1.0・大和堆 Cave 3-yr・1.06	Limit	_	_	26	_

Limit は、各管理基準の下で許容される最大レベルの漁獲量である。Target は、資源変動の可能性やデータ誤差に起因する評価の不確実性を考慮し、各管理基準の下でより安定的な資源の維持が期待される漁獲量である。ABCtarget = α ABClimit とし、係数 α には標準値 0.8 を用いた。Cave 3-yr は 2013~2015 年の漁獲量の平均値である。

年	資源量	漁獲量(百トン)	F値	漁獲割合
2011	_	20	_	_
2012	_	16	_	_
2013	_	17	_	_
2014	_	21	_	_
2015	_	25*	_	_

^{*2015}年は暫定値である。

水準:高位 動向:増加

本件資源評価に使用したデータセットは以下のとおり

データセット	基礎情報、関係調査等
年別漁獲量	生物情報収集調査(青森~鳥取(10)府県)
沖合底びき網漁業の資源密度	沖合底びき網漁業漁獲成績報告書 (水産庁)
指数	
小型底びき網漁業の CPUE	小型底びき網漁業漁獲成績報告書 (新潟県、石川県)
日本海西部の分布密度	ズワイガニ等底魚資源調査(5~6月、水研)
漁獲物のサイズ組成	新規加入量調査(新潟県、石川県)
	標本船調査(石川県、兵庫県)
	生物情報収集調査(新潟県、水研)

1. まえがき

ホッコクアカエビは北太平洋に広く分布する冷水性のエビで、我が国では北海道沿岸および日本海において漁業の対象となっている。特に日本海では鳥取県以北において沖合底びき網、小型底びき網およびかご網(石川県、新潟県、秋田県)等によって漁獲される、最大のエビ資源となっている。

2. 生態

(1) 分布・回遊

日本海のホッコクアカエビは鳥取県から北海道沿岸における水深 200~950m の深海底に生息し(図1)、特に 200~550m に多く分布する(伊東 1976)。本種の雌は抱卵すると次第に浅場へと移動し、水深 200~300m において幼生を孵出させたのち、再度深みへと移動する(貞方 2000)。孵出した稚エビは浮遊幼生期を経験したのち着底し、その後の成長に伴って 400~600m の深みへ移動すると考えられている。

(2) 年齢·成長

本種の寿命は日本海加賀沖で6歳半(山田・内木 1976)、新潟沖で9歳(新潟水試 1987) との報告もあるが、卓越年級の動態および若齢期の成長に関する知見に基づいて11歳と推 定されている(福井水試ほか 1989、1991)。

日本海における本種の平均的な成長を図2に示す。生息海域によって成長の違いが見ら

れるが(福井水試ほか 1991)、概ね3歳(頭胸甲長 18mm 前後)から漁獲加入する。

(3) 成熟·産卵

日本海における本種の産卵期は2~4月で、盛期は3月である。抱卵期間は約11ケ月で、隔年産卵を行う。本種は概ね満5歳で雄から雌へ性転換する(福井水試ほか1991)。雄としての成熟は3歳、雌としての成熟は6歳とされるが、性転換及び成熟の年齢等に関しては議論がある(貞方2004)。

(4) 被捕食関係

本種は微小な甲殻類、貝類、多毛類及びデトライタス等を餌とする一方、マダラ、スケトウダラ等の底魚類により捕食される(福井水試ほか 1989)。

3. 漁業の状況

(1) 漁業の概要

ホッコクアカエビの漁業は、1919年に機船底びき網漁業が出現して以降、本格的に始まった。現在、本系群の漁業は、本州沿岸と大和堆で行われており、本州沿岸は沖合底びき網漁業の大海区区分における北区、中区および西区、大和堆は沖合区に相当する(図 3、以下、本州沿岸および大和堆と表記)。本州沿岸では、沖合底びき網漁業(以下、沖底と表記)、小型底びき網漁業(以下、小底と表記)、かご網漁業によって、大和堆では底びき網漁業(現在は沖底のみ)によって、それぞれ水深 350~500 m の漁場を中心に操業が行われている。大和堆における沖底の操業は、本州沿岸で底びき網漁業が禁漁となる夏場を中心に 3~4ヶ月間程度行われており、本種を主な漁獲対象とする点において、本州沿岸の沖底と操業形態が異なる。

(2) 漁獲量の推移

本系群の漁獲量は 1982 年の 4,155 トンをピークに減少傾向にあったが、1991 年に最低 (1,404 トン)となって以降緩やかに回復し、2008 年には 2,542 トンとなった (図 4、表 1)。 漁獲量はその後、2011 年に 2,000 トンを下回り、2012 年に 1,593 トンまで減少したが、2013 年以降増加に転じ、2015 年の漁獲量は 2,549 トン(暫定値)であった。府県別に見ると、石川県、福井県、新潟県の漁獲量が多く、2015 年には 3 県の漁獲量が全体の 70%を占めた。

漁法および漁場別漁獲量を図 5 に示す。本系群の漁獲量のうち概ね $40\sim50\%$ を沖底が占める。また、1980 年以降一貫して本州沿岸を主体として漁業が行われており、漁獲量全体のうち $80\sim90\%$ を本州沿岸での漁獲が占める。2015 年の、本州沿岸および大和堆における沖底、ならびに小底およびかご網漁業による漁獲量は、それぞれ、1,359 トン、171 トンおよび 1,019 トンであった(表 2、いずれも暫定値)。

漁業の主体である沖底による本系群の漁獲量を大海区区分(図 3)ごとに集計したところ、中区での漁獲が沖底全体の概ね $40\sim50\%$ を占めた(図 6、表 3)。一方、西区でも 2005年以降、漁獲量が増加傾向にある。 2015年、沖底による漁獲量の 44%が中区、34%が西区におけるもので、北区、沖合区ではいずれも 11%であった。

(3) 漁獲努力量

本系群に対する沖底の漁獲努力量を集計した(図 7、表 4)。本州沿岸に関しては、本種を主対象としない操業が多いことから、年間の有効漁獲努力量を指標とした(補足資料 2 参照)。有効漁獲努力量は 1980 年代前半に 150,000 網前後であったが、1980 年代後半以降減少に転じた。2000 年以降、概ね 60,000~90,000 網の範囲で推移しており、2015 年には 91,594 網であった。

一方、大和堆では本種を主対象として操業が行われることから、操業網数を漁獲努力量とみなした。操業網数は、1980年頃および1990年代前半に6,000網を超える高い水準で推移したものの、1993年以降は減少傾向にあり、2015年に過去最低の1,607網となった。

4. 資源の状態

(1) 資源評価の方法

本州沿岸および大和堆において、漁業の主体である沖底の資源密度指数(補足資料 2)を用いて資源水準および資源動向を判断した。また、ズワイガニ等底魚資源調査結果から得られた資源量推定値および新潟県と石川県における小底の CPUE を、本州沿岸における動向判断の参考とした。

(2) 資源量指標値の推移

本州沿岸海域における沖底の資源密度指数は 1990 年以降概ね増加傾向にあり、2015 年に過去最高の 31.8 kg となった(図 8、表 5)。大海区別に見ると、北区と中区で 1990 年代以降長期的に増加し、中区では特に 2013 年から 2015 年にかけてほぼ倍増した(図 9、表 5)。西区は 1980 年以降ほぼ横ばいに推移していたが、2015 年に大きく増加した。大和堆における資源密度指数は 1994 年以降、概ね 60 kg 以上となっており、1993 年以前($28.5 \sim 57.5 \text{ kg}$)と比べて高いレベルにある(図 10、表 5)。特に 2003 年以降は増加傾向にあり、2015 年の値は過去最高(105.5 kg、1997 年)に次ぐ 101.5 kg であった。

能登半島以西の本州沿岸における資源量(図 11、表 6)は 2009 年から 2012 年にかけて、5,000~8,000トンであったが、2013 年から 2016年にかけては 9,000~12,000トンで推移している。また、石川県と新潟県における小底の CPUE(kg/網)は、新潟県では 2008年以降ほぼ横ばいで推移し、石川県では 2012年にやや低下したものの、その後は増加している(図 12、表 7)。

本州沿岸の資源量指標値が 2015 年に大きく増加した要因として、漁業の中心である本州中部沿岸において、2010 年発生の卓越年級群(図 13、14)が本格的に漁獲加入したことが考えられる。中区においては 2013 年以降、努力量が減少傾向にあるにも関わらず漁獲量が増加していることから、資源量指標値の増加は 2010 年級群の漁獲加入を反映したものと考えられる。一方、西区においては漁獲量、努力量がともに増加していることから(図 6、7、表 3、4)、本系群を主対象とした操業が増加したことで資源量指標値が増加した可能性がある(図 9、表 5)。

(3) 資源の水準・動向

前述の通り、本州沿岸における資源量指標値は2015年に大きく増加し過去最高となったが、要因としては資源の増加のみならず、西区における操業形態の変化等、人為的影響が

考えられる。そこで、本州沿岸における資源水準の区分を、平成 27 (2015) 年度本評価と同一の、1980 年から 2014 年の資源密度指数の最高値と最低値の間の 3 等分する境界とした。高位と中位、中位と低位の境界は、それぞれ 18.7kg、12.4 kg である (図 8、表 5)。2015年の資源密度指数は 31.8kg であることから、高位と判断した。また、大和堆における高位と中位、中位と低位の境界はそれぞれ 79.8 kg と 54.2 kg であった (図 10、表 5)。大和堆における 2015 年の資源密度指数は 101.5 kg で高位と判断した。

資源動向を直近 5 年間($2011\sim2015$ 年)の資源密度指数から判断した。本州沿岸においては 2012 年に 22.5 kg まで減少した資源密度指数が $2013\sim2014$ 年に回復したのち 2015 年に過去最高の 31.8 kg となったことから、増加と判断した(図 8、表 5)。また、大和堆においても、2011 年に 85.4kg であった資源密度指数が 2015 年には 101.5kg となったため、増加と判断した(図 10、表 100、表 100、表 100。

なお、本州沿岸については、トロール調査結果から得られた資源量推定値(図 11、表 6) および石川県における小底の CPUE(図 12、表 7) が増加傾向、新潟県における小底の CPUE が横ばい傾向にあり、それぞれ、西区と中区、および北区における資源密度指数の動向と一致する。

5. 2017 年 ABC の算定

(1) 資源評価のまとめ

本系群の資源状態を、本州沿岸および大和堆における沖合底びき網漁業の資源密度指数を指標として判断した。2015年の資源密度指数は本州沿岸、大和堆ともに高位水準にあり、2011~2015年ではいずれも増加傾向にあった。従って、両海域を含めた本系群全体の資源水準を高位、動向を増加と判断した。

(2) ABC の算定

漁獲量と資源量指標値が使用できることから、ABC 算定規則 2-1) に従い、現在の資源水準及び資源量指標値(沖底の資源密度指数)に合わせて漁獲を行うことを管理方策として、以下の式により 2017 年 ABC を算定した。なお、ABC の算定にあたっては、本州沿岸、大和堆のそれぞれの海域で ABC を計算し、系群全体の ABC として合算した。

ABClimit = $\delta_1 \times Ct \times \gamma_1$ ABCtarget = ABClimit $\times \alpha$ $\gamma_1 = (1 + k \times (b/I))$

ここで、Ct は t 年の漁獲量であり、ここでは直近 3 年の漁獲量の平均値($Cave\ 3$ -yr)を用いた。 δ_I は資源水準で決まる係数、k は係数、b と I は資源量指標値の傾きと平均値、 α は安全率である。資源量指標値として沖底の資源密度指数を用い、直近 3 年間($2013\sim2015$ 年)の動向から b および I を求めるとともに、資源量指標値の変動から γ_I を求めた。また、k は標準値の 1.0 とし、 δ_I には資源量指標値が高位水準にある際の標準値である 1.0 を適用した。

本系群に関する 2017 年の ABC (Limit 値) について、上式に従って算出した。本州沿岸においては、b (6.20)、I (24.55) より得られた γ (1.25) により 2,449 トン、大和堆においては b (5.21)、I (94.49) より得られた γ (1.06) により 178 トン、本系群全体で合計 2,627 トンと算定された。 α は、漁獲量を基礎とする資源判断の不確実性を考慮し、標準値

の 0.8 とした。

					Blimit =
	T		漁獲	2017年	_
管理基準	Target/	F 値	割合	ABC	親魚量
	Limit		(%)	(百トン)	5 年後
			(70)	(11)	(百トン)
1.0・本州沿岸 Cave 3-yr・1.25	Target	_	_	21	_
1.0・大和堆 Cave 3-yr・1.06	Limit	_	_	26	_

Limit は、各管理基準の下で許容される最大レベルの漁獲量である。Target は、資源変動の可能性やデータ誤差に起因する評価の不確実性を考慮し、各管理基準の下でより安定的な資源の維持が期待される漁獲量である。ABCtarget = α ABClimit とし、係数 α には標準値 0.8 を用いた。Cave 3-yr は 2013~2015 年の漁獲量の平均値である。

(3) ABC の再評価

昨年度評価以降追加 されたデータセット	修正・更新された数値
2015年の沖合底びき網漁業の漁獲量と指標値	2015 年沖合底びき網漁業の資源密度指数
2014 年漁獲量確定値	2014 年漁獲量の確定

評価対象年	管理	資源	ABClimit	ABCtarget	漁獲量
(当初・再評	基準	量	(百ト	(百トン)	(百ト
価)			ン)		ン)
2015年(当初)	1.0・本州沿岸 Cave 3-yr・0.90		16	12	
2013 4 (31)	1.0・大和堆 Cave 3-yr・1.04		10		
2015 年(2015	1.0・本州沿岸 Cave 3-yr・0.89		16	12	
年再評価)	1.0・大和堆 Cave 3-yr・1.04		10	13	
2015 年(2016	1.0・本州沿岸 Cave 3-yr・0.90		17	12	25
年再評価)	1.0・大和堆 Cave 3-yr・1.04		1 /	15	23
2016年(当初)	1.0・本州沿岸 Cave 3-yr・0.92		19	1.5	
2016 4 (31)	1.0・大和堆 Cave 3-yr・1.02		19	13	
2016年(2016	1.0・本州沿岸 Cave 3-yr・0.92		19	15	
年再評価)	1.0・大和堆 Cave 3-yr・1.02		19	13	

2016年再評価において 2014年漁獲量を確定値に更新した。2014年漁獲量の確定値は暫 定値と同じであった。

6. ABC 以外の管理方策の提言

本州中部沿岸を中心に卓越する 2010 年級群が本格的に漁獲加入したことが、トロール調査から示唆されている(図 14)。またそりネットを用いた加入量調査からは、上記の 2010 年級群に加え、2014 年級群(頭胸甲長 10mm 前後)が高密度に分布することが示唆された(図 13)。これらの年級群の漁獲加入により向こう数年間の好漁が見込まれる一方、卓越年級群発生時には、雄性先熟である本種の性転換年齢が早まることが指摘されており(貞方 2004)、実際、浜田沖から能登沖にかけての本州沿岸において小型の抱卵雌が確認されている(図 14)。早期性転換個体の成長を調べるとともに、水揚げ状況や資源動向との関係を把握する必要がある。

また、本種のサイズ組成に漁獲圧が影響することが示唆されている(貞方 2004)。資源 量が最も多い隠岐北方海域において、本種の大半は漁獲圧が極めて低い日韓暫定水域に分 布しており、漁獲が盛んに行われている他海域に比べ、大型個体が極めて多い(図 14)。 これらの海域におけるサイズ組成と漁獲圧の関係を明らかにすることで、今後は小型個体 保護等の、資源をより有効利用する管理方策の提言が可能になることが期待される。

7. 引用文献

- 新潟県水産試験場 (1987) 昭和 61 年度新潟県沿岸域漁業管理適正化方式開発調査報告書. 新潟県水試資料, 86-3, 226pp.
- 福井県水産試験場・石川県水産試験場・新潟県水産試験場・山形県水産試験場 (1989) ホッコクアカエビの生態と資源管理に関する研究. 特定研究開発促進事業 地域性重要水産資源管理技術開発総合研究中間報告書,91pp.
- 福井県水産試験場・石川県水産試験場・新潟県水産試験場・山形県水産試験場 (1991) ホッコクアカエビの生態と資源管理に関する研究. 特定研究開発促進事業 地域性重要水産資源管理技術開発総合研究総合報告書,120pp.
- 伊東 弘 (1976) 日本海産ホッコクアカエビに関する2・3の知見. 日水研報,27,75-89.
- 貞方 勉 (2000) 日本海能登半島近海産ホッコクアカエビの海深別の分布と移動. 日本海 能登半島近海産ホッコクアカエビの資源管理技術に関する研究-III-. 日本水産学会誌, 66,969-976.
- 貞方 勉 (2004) 日本海能登半島近海産ホッコクアカエビの群構造と性転換. 日本海能登 半島近海産ホッコクアカエビの資源管理技術に関する研究-IV-. 日本水産学会誌, **70**, 131-137.
- 山田悦正・内木幸次 (1976) 加賀海域におけるホッコクアカエビの生態に関する研究. 石川県水試研報, 1, 1-12.

図1. ホッコクアカエビの分布

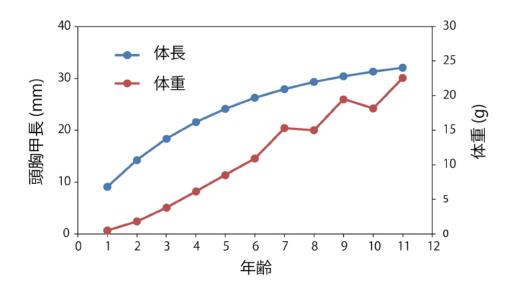


図 2. 日本海におけるホッコクアカエビの成長

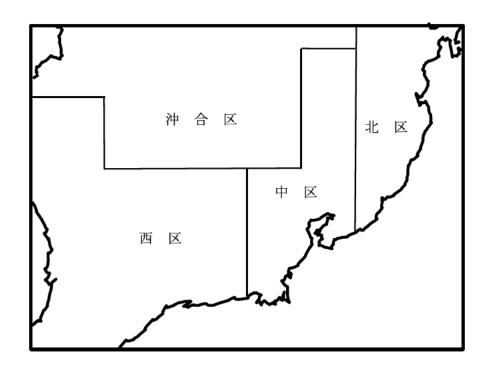


図3. 日本海における沖合底びき網漁業の大海区区分

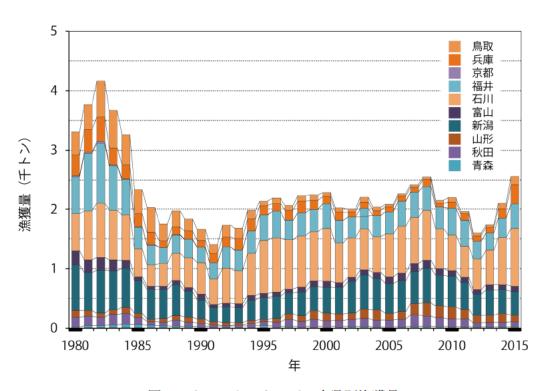


図 4. ホッコクアカエビの府県別漁獲量

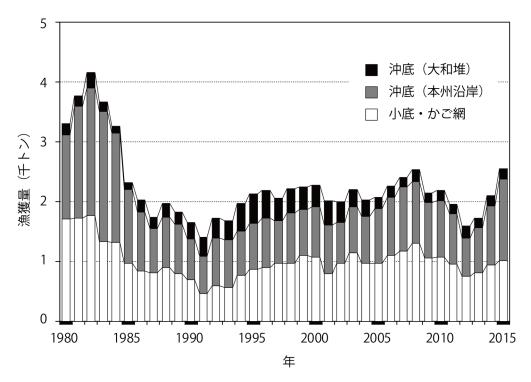


図 5. ホッコクアカエビの漁法 (沖合底びき、その他) および漁場 (本州沿岸、大和堆) 別漁獲量

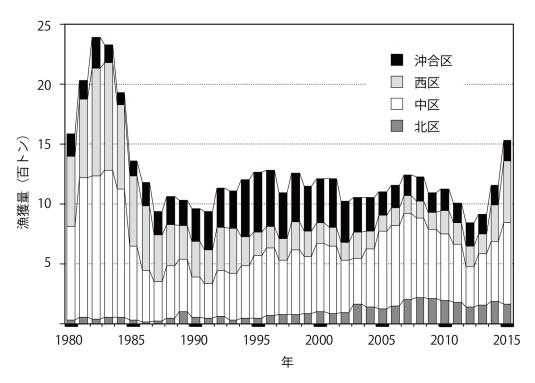


図 6. 沖合底びき網漁業におけるホッコクアカエビの大海区別漁獲量

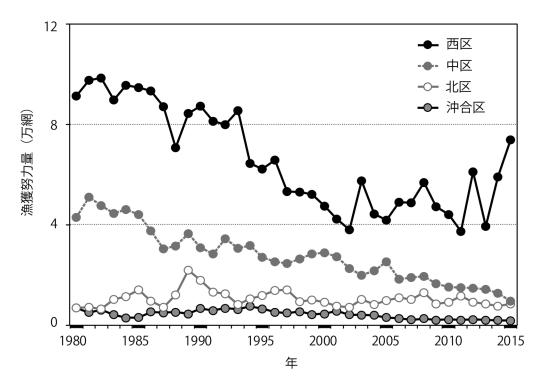


図 7. 沖合底びき網漁業における本州沿岸(西区、中区および北区)の有効漁獲努力量および大和堆(沖合区)における操業網数

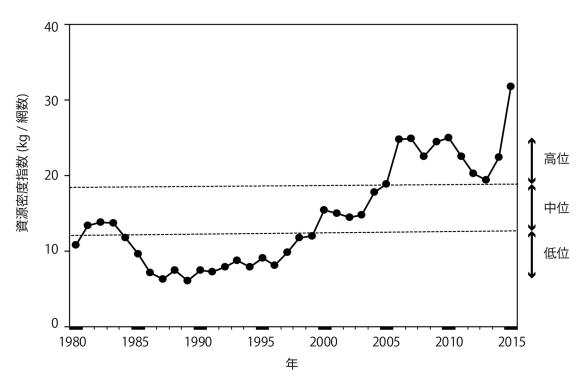


図 8. 沖合底びき網漁業における本州沿岸全体の資源密度指数 資源水準に関する高位と中位、および中位と低位の境界を破線にて示した。

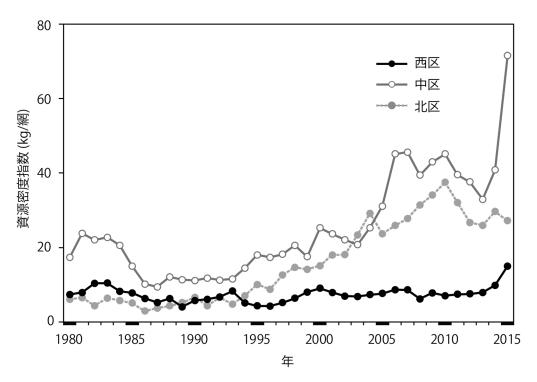


図 9. 沖合底びき網漁業におけるホッコクアカエビの大海区別資源密度指数

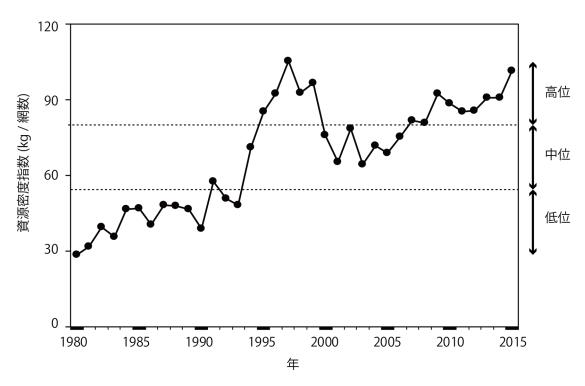


図 10. 沖合底びき網漁業における大和堆のホッコクアカエビの資源密度指数 資源水準 に関する高位と中位、および中位と低位の境界を破線にて示した。

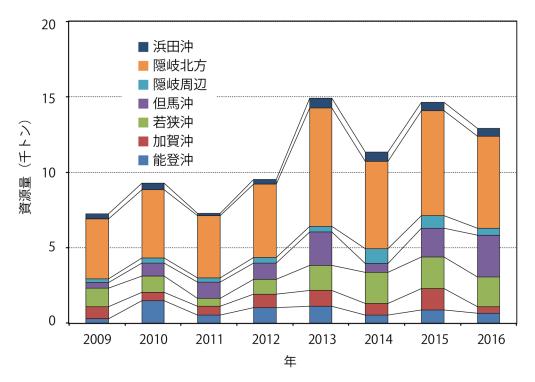


図 11. トロール調査により推定された本州沿岸(能登沖以西水深 $200\sim550$ m 範囲)における資源量 トロール網の採集効率を 1 とした。

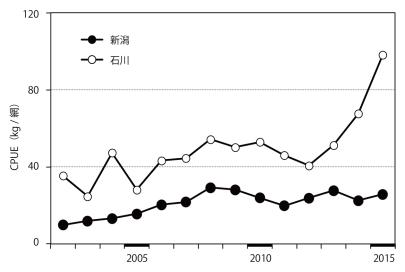


図 12. 石川県と新潟県の小型底びき網漁業による1網あたりのホッコクアカエビ漁獲量の経年変化 網数にはホッコクアカエビの有漁網数を用いた。

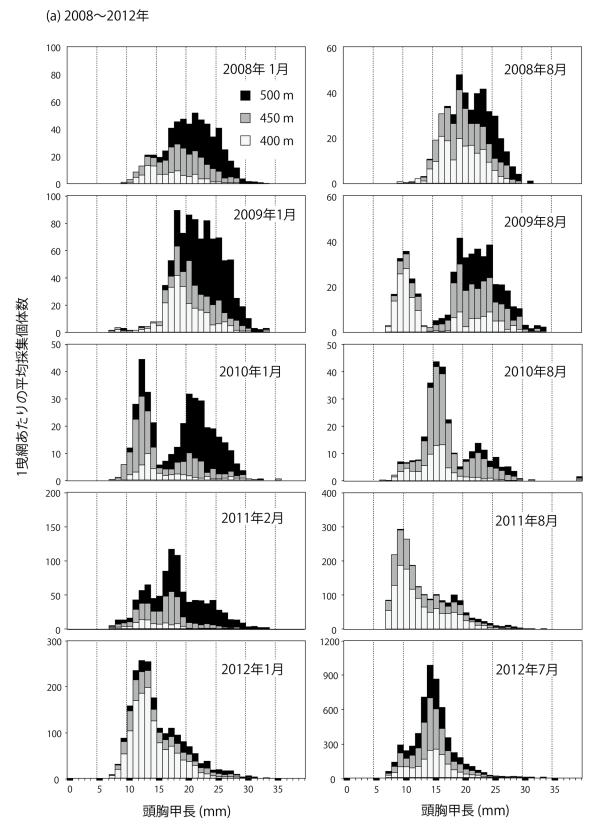


図 13. (a) 2008~2012 年において、石川県加賀沖のソリ付き桁網調査で採集されたホッコクアカエビの頭胸甲長組成(水深帯ごとに1曳網あたりの平均個体数を積算)

(b) 2013~2016年

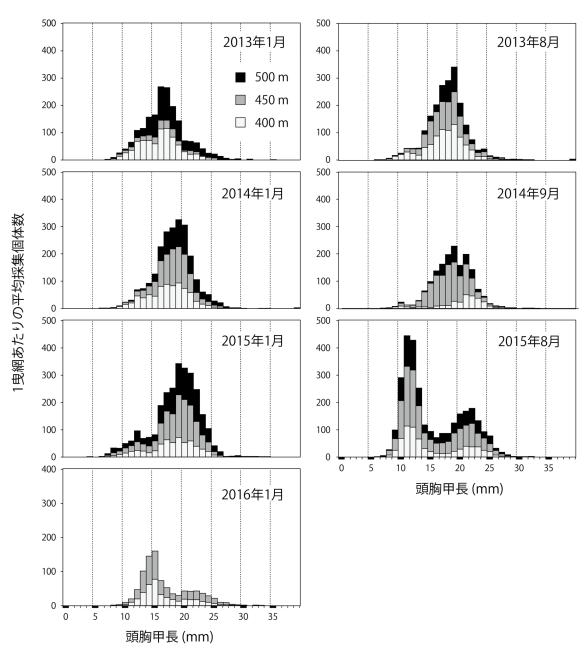


図 13. (b) 2013~2016 年において、石川県加賀沖のソリ付き桁網調査で採集されたホッコクアカエビの頭胸甲長組成(水深帯ごとに1曳網あたりの平均個体数を積算)

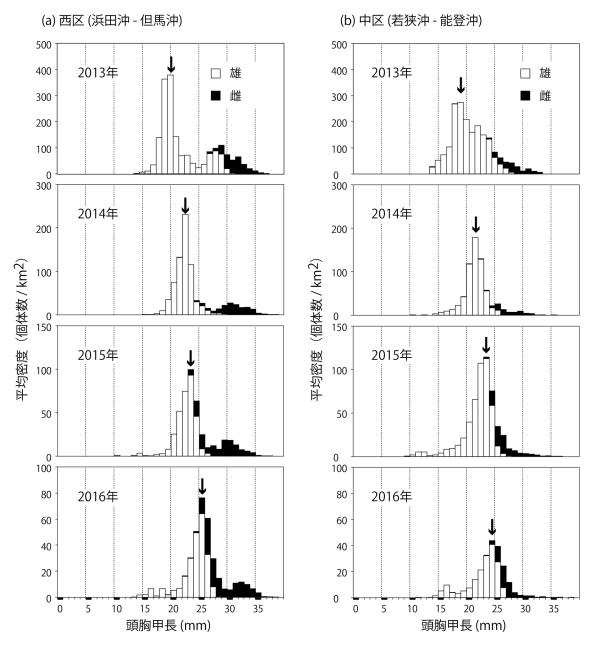


図 14. 西区 (a, 浜田沖〜但馬沖) および中区 (b, 若狭沖〜能登沖) においてトロール調査 (日本海ズワイガニ等底魚資源調査) により採集されたホッコクアカエビの頭胸甲長組成とその経年変化 平均的な成長速度 (図 2) から 2010 年級と推定されるモードを矢印にて示す。

ホッコクアカエビ日本海系群ー17ー

表 1. 日本海(北海道沿岸を除く)におけるホッコクアカエビの府県別漁獲量

左	府県別漁獲量 (トン)									計	
年	青森*	秋田	山形	新潟**	富山**	石川**	福井**	京都	兵庫	鳥取	īΤ
1980	14	158	118	766	243	618	630	18	344	389	3,298
1981	34	159	96	638	215	827	965	19	385	422	3,760
1982	37	139	68	727	214	914	1010	31	412	603	4,155
1983	45	181	77	657	183	837	747	16	287	628	3,658
1984	58	180	102	661	133	764	599	9	239	511	3,256
1985	52	115	75	548	70	469	367	3	219	405	2,323
1986	40	61	42	500	55	360	334	7	208	419	2,026
1987	29	66	62	489	54	382	268	2	108	286	1,746
1988	25	101	76	520	77	460	305	5	129	272	1,970
1989	23	72	81	433	72	497	309	3	139	206	1,835
1990	-	77	69	321	100	530	257	3	114	188	1,659
1991	-	49	54	239	52	429	272	4	150	155	1,404
1992	-	34	54	266	60	587	358	2	170	197	1,728
1993	-	46	40	255	64	556	348	2	191	179	1,681
1994	-	74	48	338	84	710	374	2	202	146	1,978
1995	-	70	35	367	71	893	429	2	153	80	2,100
1996	-	97	57	375	69	919	447	2	130	89	2,185
1997	-	117	95	351	67	826	333	0	169	81	2,039
1998	-	109	92	396	87	867	385	0	195	94	2,225
1999	-	140	147	407	94	829	379	0	151	95	2,242
2000	-	115	129	434	104	893	412	0	122	67	2,276
2001	-	122	110	453	75	668	385	0	138	66	2,017
2002	-	118	104	527	79	667	347	0	87	48	1,977
2003	-	132	155	582	86	686	346	0	111	79	2,177
2004	-	115	170	531	103	604	355	0	84	58	2,020
2005	-	129	114	496	117	724	375	0	86	39	2,080
2006	15	129	126	520	128	793	421	0	83	45	2,260
2007	24	190	192	543	133	775	429	0	79	47	2,412
2008	23	172	223	586	133	841	401	0	119	44	2,542
2009	20	145	208	510	117	671	360	0	68	48	2,147
2010	17	129	207	516	94	601	450	0	105	73	2,192
2011	17	128	163	454	90	520	443	0	103	45	1,963
2012	12	70	123	360	78	514	296	0	97	43	1,593
2013	14	74	121	423	96	580	289	0	89	47	1,733
2014	13	81	145	400	88	793	325	0	163	91	2,099
2015	14	90	106	398	93	973	410	0	325	140	2,549

^{*} 青森県は1989年以前および2006年以降についてのみ漁獲量を掲載。

^{**}本種漁獲量は農林統計で集計されていないため、原則として各府県の集計によるが、新 潟県から福井県の4県については2006年まで農林統計(属地)が利用できるため、 その値を使用した。

表 2. 漁法および海区別漁獲量

_	漁法・済	毎区別漁獲量(トン)	
年	沖瓜	E	その他の漁法	計
	本州沿岸	沖底大和堆	C 0万區 07 孫 伍	
1980	1,394	186	1,718	3,298
1981	1,872	161	1,727	3,760
1982	2,133	255	1,767	4,155
1983	2,176	150	1,332	3,658
1984	1,820	109	1,327	3,256
1985	1,232	122	969	2,323
1986	984	191	851	2,026
1987	738	196	812	1,746
1988	829	234	907	1,970
1989	821	209	805	1,835
1990	685	272	702	1,659
1991	618	316	470	1,404
1992	799	332	597	1,728
1993	790	314	577	1,681
1994	726	471	781	1,978
1995	766	497	837	2,100
1996	812	463	910	2,185
1997	709	384	946	2,039
1998	847	406	972	2,225
1999	770	372	1,100	2,242
2000	841	364	1,071	2,276
2001	800	409	808	2,017
2002	673	344	960	1,977
2003	765	287	1,125	2,177
2004	772	279	969	2,020
2005	904	193	983	2,080
2006	962	193	1,105	2,260
2007	1,067	172	1,173	2,412
2008	1,022	206	1,314	2,542
2009	924	164	1,059	2,147
2010	939	182	1,071	2,192
2011	839	166	958	1,963
2012	642	198	753	1,593
2013	743	167	823	1,733
2014	985	166	948	2,099
2015	1,359	171	1,019	2,549

2015年は暫定値である。

表 3. 日本海区沖合底びき網漁業における大海区別漁獲量

年		医大海区別漁獲	量(トン)		計
	北区	中区	西区	沖合区	н
1980	26	781	587	186	1,580
1981	48	1,167	657	161	2,032
1982	32	1,201	900	255	2,388
1983	55	1,225	896	150	2,326
1984	49	1,074	697	109	1,930
1985	26	616	590	122	1,355
1986	10	431	543	191	1,176
1987	18	331	389	196	935
1988	41	439	349	234	1,062
1989	98	440	283	209	1,029
1990	55	331	299	272	957
1991	41	291	286	316	934
1992	61	385	353	332	1,130
1993	30	391	369	314	1,104
1994	41	439	246	471	1,198
1995	46	518	202	497	1,263
1996	64	567	181	463	1,275
1997	72	457	180	384	1,093
1998	76	539	232	406	1,253
1999	81	480	209	372	1,143
2000	98	571	172	364	1,205
2001	84	559	157	409	1,209
2002	90	441	142	344	1,017
2003	157	387	221	287	1,052
2004	138	486	148	279	1,050
2005	121	650	133	193	1,097
2006	146	673	143	193	1,156
2007	200	722	145	172	1,238
2008	212	665	145	206	1,227
2009	206	580	138	164	1,089
2010	193	557	189	182	1,121
2011	178	481	180	166	1,004
2012	136	337	169	198	840
2013	153	431	159	167	911
2014	183	502	300	166	1,152
2015	163	679	517	171	1,530

2015年は暫定値である。

表 4. 日本海区沖合底びき網漁業におけるホッコクアカエビに対する本州沿岸の有効漁獲 努力量と大和堆における操業網数

年	本州沿岸	岸における沖原	大和堆における		
'	北区	中区	西区	計	努力量
1980	6,586	42,791	91,508	140,885	6,646
1981	6,952	50,881	97,659	155,492	4,862
1982	6,302	47,713	98,563	152,578	5,852
1983	9,974	44,374	89,962	144,310	3,974
1984	11,165	46,104	95,710	152,979	2,651
1985	13,860	44,111	94,854	152,825	2,848
1986	9,419	37,468	93,547	140,434	5,066
1987	7,013	30,242	87,194	124,449	4,769
1988	11,877	31,333	70,798	114,008	4,966
1989	21,795	36,267	84,410	142,472	4,272
1990	17,671	30,644	87,485	135,800	6,366
1991	13,003	28,185	81,363	122,551	5,595
1992	12,266	34,333	79,974	126,573	6,528
1993	8,051	30,611	85,526	124,188	6,123
1994	10,345	31,604	64,456	106,405	7,334
1995	11,578	26,989	62,246	100,813	6,250
1996	13,561	25,074	65,746	104,381	4,900
1997	13,868	24,522	53,162	91,552	4,609
1998	9,271	26,284	52,966	88,521	5,146
1999	9,777	28,184	52,057	90,018	4,035
2000	8,866	28,667	47,321	84,854	4,240
2000	7,429	27,255	42,181	76,865	5,354
2001	6,871	22,436	37,832	67,139	3,919
2002	10,067	19,639	57,546	87,252	3,825
2003	8,146	21,587	44,318	74,051	3,715
2005	9,686	25,076	41,821	76,583	2,791
2006	10,818	18,078	49,047	77,943	2,435
2007	9,975	18,884	48,619	77,478	1,903
2008	12,852	19,380	56,882	89,113	2,387
2009	8,305	16,261	47,122	71,688	1,768
2010	8,878	15,059	43,923	67,860	2,024
2011	11,345	14,839	37,353	63,537	1,831
2012	8,993	14,515	61,099	84,607	2,039
2013	8,225	14,099	39,241	61,565	1,777
2014	7,410	12,633	59,020	79,063	1,739
2015	8,251	9,340	74,003	91,594	1,607

表 5. 日本海区沖合底びき網漁業における大海区別資源密度指数 本州沿岸の大海区(北区、中区、西区)および大和堆、それぞれに関して集計した。

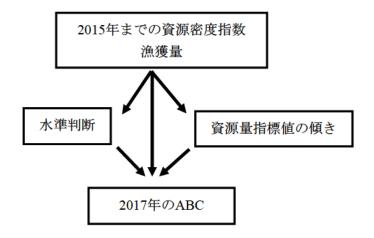
F		資源	原密度指数	ζ (kg)	
年	北区	中区	西区	本州沿岸	大和堆
1980	6.1	17.3	7.4	10.8	28.5
1981	6.5	23.8	7.9	13.3	31.6
1982	4.3	22	10.4	13.8	39.6
1983	6.4	22.7	10.5	13.7	35.5
1984	5.8	20.6	8.2	11.8	46.6
1985	5.1	15	7.8	9.7	47.1
1986	2.9	10.1	6.3	7.1	40.4
1987	3.7	9.4	5.2	6.3	48.4
1988	4.3	12.1	6.3	7.5	48
1989	5.2	11.3	4.1	6.1	46.5
1990	6.6	11.1	5.8	7.4	38.7
1991	4.4	11.8	6.1	7.2	57.5
1992	6.6	11.2	6.7	7.8	50.7
1993	4.8	11.6	8.3	8.7	48.3
1994	7	14.5	5.1	7.9	71.2
1995	10	18	4.3	9.1	85.3
1996	8.8	17.4	4.3	8.1	92.6
1997	12.6	18.2	5.2	9.9	105.5
1998	14.7	20.6	6.4	11.7	92.9
1999	14.1	17.5	8	12	96.7
2000	15.1	25.2	9	15.4	76.1
2001	18	23.7	7.9	15	65.2
2002	18.1	22.1	6.9	14.4	78.6
2003	23.4	20.7	6.8	14.7	64.5
2004	29.2	25.3	7.3	17.8	71.8
2005	23.7	31.1	7.6	18.9	68.8
2006	25.9	45.1	8.7	24.8	75.4
2007	27.8	45.6	8.6	24.9	81.9
2008	31.4	39.4	6.2	22.6	80.8
2009	34	43	7.8	24.4	92.6
2010	37.5	45.1	7	25	88.6
2011	32.1	39.5	7.4	22.5	85.4
2012	26.7	37.6	7.5	20.3	85.8
2013	25.9	32.9	7.9	19.4	91
2014	29.7	40.8	9.8	22.5	91
2015	27.2	71.6	15	31.8	101.5

ホッコクアカエビ日本海系群-22-

表 6. トロール調査により推定された本州沿岸(能登沖以西水深 $200\sim550~\mathrm{m}$ 範囲)における海区別資源量

年 -	海区別資源量(トン)							
+	能登沖	加賀沖	若狭沖	但馬沖	隠岐周辺	隠岐北方	浜田沖	計
2009	230	639	989	282	203	3,174	290	5,807
2010	1,179	458	853	695	262	3,638	329	7,414
2011	425	457	430	865	223	3,284	143	5,827
2012	819	722	775	862	288	3,912	245	7,623
2013	882	835	1,352	1,756	296	6,302	520	11,944
2014	415	627	1,649	460	785	4,652	484	9,071
2015	690	1,136	1,671	1,537	672	5,570	425	11,701
2016	530	328	1,574	2,220	388	4,878	424	10,342

トロール網の採集効率を1とした。


表 7. 新潟県および石川県の小型底びき網漁業における CPUE (kg/網)

年	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
新潟	9.9	11.9	13.2	15.6	20.4	21.8	29.3	28.2	24.0	19.8	23.8	27.7	22.5	25.8
石川	35.4	24.8	47.3	28.2	43.3	44.5	54.4	50.2	53.0	46.0	40.7	51.3	67.7	98.3

努力量には有漁網数を用いた。

補足資料1 資源評価の流れ

使用したデータと資源評価の関係を、以下のフローを参考に簡潔に記す。

補足資料 2 沖底漁獲成績報告書を用いた資源量指標値の算出方法

沖底漁獲成績報告書では、月別漁区(10分析目)別の漁獲量と網数が集計される。これらより、月i漁区iにおけるCPUE(U)は次式で表される。

$$U_{i,j} = \frac{C_{i,j}}{X_{i,j}}$$

上式でCは漁獲量を、Xは努力量(網数)を、それぞれ示す。

集計単位(小海区)における資源量指数 (P)は CPUE の合計として、次式で表される。

$$P = \sum_{i=1}^{I} \sum_{j=1}^{J} U_{i,j}$$

集計単位における有効漁獲努力量 (X') と漁獲量 (C)、資源量指数 (P) の関係は次式のように表される。

$$P = \frac{CJ}{X'}$$
 すなわち $X' = \frac{CJ}{P}$

上式でJは有漁漁区数(対象魚が1kg以上漁獲された農林漁区(緯度経度10分枡目)の数)であり、資源量指数(P)を有漁漁区数(J)で除したものが資源密度指数(D)である。

$$D = \frac{P}{J} = \frac{C}{X'}$$

本評価では、資源状態を示す指数として資源量指数を有漁漁区数で除して得られる資源密度指数を用いた。本州沿岸における底びき網漁業では、本種を狙って集中的に漁獲されるケースがあるものの、それ以外の曳網では混獲程度の漁獲量しか得られない。そのため、本種狙いの操業だけを抽出して解析することが望ましいが、漁獲成績報告書で報告される最小単位(船ごと日ごと)から本種狙いの網だけを抽出することは難しく、すべての操業を同等に扱わざるを得ない。また、本種を狙う操業船(あるいは操業)の増減によって漁区数や CPUE の総和である資源量指数が影響を受けることが想定される。そのため、長期間にわたる資源密度の指標として、各漁区における CPUE の平均値である資源密度指数を使用することが適当と判断した。

大和堆については、本種を狙った操業のみが行われているが、操業隻数の減少により、漁獲量ピーク時に比べて近年は6割程度まで減少している。この漁区数の減少による資源量指標値への影響を排除するために、実際に利用された漁区の平均 CPUE として求められる資源密度指数を利用した。以前は1網あたり漁獲量(CPUE)を資源密度指数としていたが、漁場が狭い海域に限定された状態になっている点を考慮し、一昨年から資源密度を利用している。ただし、CPUE と資源密度指数との相関は高く(直線回帰 r^2 =0.91)、ABCの計算に与える影響は小さい。