# 平成20年度資源評価票(ダイジェスト版

## 標準和名 マアジ

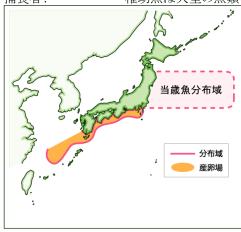
学名 Trachurus japonicus

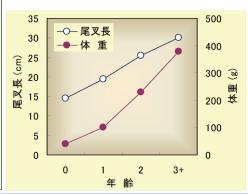
系群名 太平洋系群

担当水研 中央水産研究所

### 生物学的特性

寿命: 5歳前後


成熟開始年齡:


1歳(50%)、2歳以上(100%) 冬~初夏、東シナ海を主産卵場とする群と九州~本州中部沿岸で 産卵する地先群がある 産卵期•産卵場:

索餌期•索餌場: 九州南岸~東北太平洋岸

仔稚魚は動物プランクトン、幼魚以降は魚食性が強くなる 食性:

捕食者: 稚幼魚は大型の魚類等





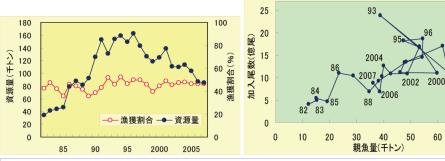
#### 漁業の特徴

まき網による漁獲量が全体の約80%を占め、定置網が約20%でこれに次ぐ。日向灘、豊後水道、紀伊水道〜熊野灘では春〜秋季の漁獲が多く、相模湾では春季が主体である。これらの海域では春季から0歳魚が、年初から1歳魚が漁獲される。千葉県以北の海域では秋〜初冬が主漁期で、1歳魚以上の漁獲が多い。

1986年に急増して30千トンを超え、1990年以降に再び急増して1994年に83千トンとなったが1997年以降は減少に転じ1999年には47千トンとなった。2000年と2001年に再び増加したが、2002年以降は50千トン程度、2006年以降は40千トン程度で推移している。外国漁船による漁獲はない。



#### 資源評価法


コホート解析により年齢別資源尾数、資源量、漁獲係数Fを計算した。ただし2007年の加入尾数はコホート計算から除外し、資源量指標値(宮崎県南部定置網幼魚入網量の対数値)を用いて推定した。自然死亡係数Mは、寿命とMの経験的な関係から0.5とした。

#### 資源状態

資源量は1986年以降顕著に増大し、1990年代半ばは150千トンから160千トンと高位水準であったが、1996年の162千トンを頂点に減少した。2000年と2001年にはやや増加したが、2002年以降は100千トン前後を推移し、2007年の資源量は85千トンとなっている。2006年の加入尾数は約7億尾と極めて少なく、2007年も約9億尾と少ない値である。







### 管理方策

資源管理の方策は資源水準の維持を基本方向として行う。Blimitの値は加入量が増加した1986年水準の親魚量24 千トンとした。現在の親魚量の水準はBlimitを上回っているため資源の回復措置をとる必要はないが、現状の漁獲係数(Fcurrent) は親魚量を維持する漁獲係数(Fmed)よりも高いため、Fcurrentで漁獲を継続した場合には資源量は減少すると考えられる。このためABCは、資源の維持が期待されるシナリオ (Fmed)および漁獲圧を現状から2割程度削減し親魚量の確保を目指すシナリオ(F15%SPR)から算定し、Fcurrentによる漁獲量は参考値として取り扱うこととした

92

70

| /C <sub>0</sub>                      |                          |      | 将来漁獲量                       |           | 評価                        |                        |                    |
|--------------------------------------|--------------------------|------|-----------------------------|-----------|---------------------------|------------------------|--------------------|
| 漁獲シナリオ<br>(管理基準)                     | F値<br>(Fcurrentとの<br>比較) | 漁獲割合 | 5年後                         | 5年平<br>均  | 現状親魚<br>量を<br>維持<br>(5年後) | Blimitを維<br>持<br>(5年後) | 2009年<br>ABC       |
| 漁獲圧を低減し<br>資源の増加を<br>図る<br>(F15%SPR) | 1.01<br>(0.83Fcurrent)   | 42%  | 30千ト<br>ン<br>~<br>59千ト<br>ン | 37千トン     | 94%                       | 99%                    | 32千トン              |
| 現状の親魚量<br>の<br>維持(Fmed)              | 1.12<br>(0.93Fcurrent)   | 45%  | 23千ト<br>ン<br>〜<br>45千ト<br>ン | 34千トン     | 47%                       | 77%                    | 34千トン              |
|                                      |                          |      |                             |           |                           |                        | 2009年算<br>定<br>漁獲量 |
| 現状の漁獲圧<br>の<br>維持(Fcurrent)          | 1.21<br>(1.00Fcurrent)   | 47%  | 19千ト<br>ン<br>〜<br>37千ト<br>ン | 31千ト<br>ン | 9%                        | 35%                    | 35千トン              |

#### コメント

- \*ント

  当該資源に対する漁獲割合は安定しているが、現状の漁獲圧はやや高いと考えられる
  中期的管理方針では、「資源水準の維持を基本方向として管理を行う」とされている
  Fcurrentは2003~2007年のFの平均値(Fave5-yr)。 F値(漁獲係数)は各年齢の単純平均値。漁獲割合は漁獲量/資源量。 将来漁獲量(80%区間)および評価は加入量変動を考慮した10,000回のシミュレーションから算出した

#### 資源評価のまとめ

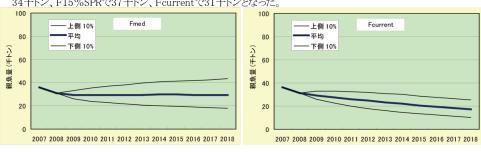
- 資源水準は中位で、動向は減少傾向である Blimitは加入量が急増した1986年水準の親魚量(24千トン)と設定した
- 現在の親魚量(36千トン)はBlimit (24千トン)を上回っている 2006年および2007年の加入量は少ない
- 現状の漁獲圧はFmedよりも高い値である

# 管理方策のまとめ

- ABCは現状の親魚量を維持するシナリオ(Fmed)および漁獲圧を低減し資源の増加を図るシナリオ(F15%SPR)から算
- ・ 親泉量はBlimitを上回っているが、現状の漁獲圧(Fcurrent)はFmedより高いことから、資源を維持するためには漁獲 圧の削減が望ましい

# 期待される管理効果

(1)漁獲シナリオに対応したF値による資源量(親魚量)及び漁獲量の予測 2008~2013年の再生産成功率が1977~2007年の中央値であるとして将来予測を行うと、漁獲量と資源量は F15%SPRで漁獲を継続した場合はゆるやかに増加し、Fmedで漁獲した場合は2009年の水準にほぼ安定する。 Fcurrentで漁獲を継続した場合では漁獲量と資源量は共に減少する。






2009

2010

F15%SPRで94%、Fcurrentでは9%であった。このシミュレーションによる2009~2013年の平均漁獲量は、Fmedで34千トン、F15%SPRで37千トン、Fcurrentで31千トンとなった。



資源評価は毎年更新されます。