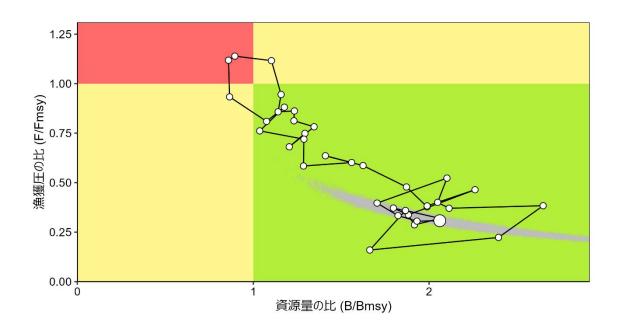
令和6(2024)年度ソウハチ道北系群の資源評価

水産研究·教育機構

水産資源研究所 水産資源研究センター (千葉 悟・佐藤隆太・境 磨・ 濵邉昂平・森田晶子・市野川桃子・濱津友紀)

参画機関:北海道立総合研究機構中央水産試験場、北海道立総合研究機構稚内水産試験場、 海洋生物環境研究所


要約

本系群の資源状態について、状態空間型の余剰生産モデル(プロダクションモデル)により評価した。モデルへの事前情報の与え方の異なる 2 つの基本モデルにより得られた推定結果を統合して資源状態を判断した。 2 つの基本モデルから推定された資源量や漁獲圧はほぼ同様の推移を示した。 2 つの基本モデルの推定結果を統合して算出された 1985 年漁期以降の資源量は、1994 年漁期には 2.5 千トン(90%信頼区間は 1.9 千~3.4 千トン、以下同様)に減少したがその後は増加傾向に転じた。 2010、 2020 年代は概ね 5.0 千トン以上で増減しながら推移している。近年は 2016 年漁期の 7.8 千トン(6.0 千~10.3 千トン)から 2020 年漁期に 5.0 千トン(3.6 千~7.0 千トン)まで減少した後、ゆるやかに増加し 2023 年漁期は 6.0 千トン(4.6 千~8.0 千トン)と推定された。漁獲圧は長期的には資源量とは逆の傾向を示しており、長期的には低下傾向で推移して 2023 年漁期の漁獲圧は 0.29(0.22~0.38)と推定された。

2023 年漁期の資源量は最大持続生産量 MSY を実現する水準 (Bmsy) を上回る。また、2023 年漁期の漁獲圧は Bmsy を維持する水準 (Fmsy) を下回る。資源量の動向は直近 5 年間 (2019~2023 年漁期) の推移から横ばいと判断される。

本資料では、管理基準値や漁獲管理規則など、資源管理方針に関する検討会(ステークホルダー会合)の議論をふまえて最終化される項目については、管理基準値等に関する研究 機関会議資料において提案された値を暫定的に示した。

最大持続生産量(MSY)、資源量の水準と動向、および ABC						
MSY を実現する水準の資源量 2.9 千トン (90%信頼区間 1.8 千~4.2 千トン)						
2023 年漁期の資源量の水準	MSY を実現する水準(Bmsy)を上回る					
2023 年漁期の漁獲圧の水準	Bmsy を維持する水準(Fmsy)を下回る					
2023 年漁期の資源量の動向	横ばい					
最大持続生産量(MSY) 2.7 千トン(90%信頼区間 2.6 千~2.9 千トン)						
2025 年漁期の ABC						

コメント:

- ・ABC は、本資源の漁獲シナリオが「資源管理方針に関する検討会」で取り纏められ「水産政策審議会」を経て定められた後に算定される。
- ・ここで示されている数値は、2つの基本モデルによる推定結果から繰り返し計算数分だけパラメータセットを再生成して算出した値の中央値を代表値として、5パーセンタイル値と95パーセンタイル値を括弧内に90%信頼区間として示した。以降、2つのモデルの結果を要約する際は、上記の算出方法を用いた。

直近 5 年と将来 2 年の資源量、漁獲量、漁獲圧、および F/Fmsy					
海地左	資源量(千トン)	漁獲量	F/Fmsy	漁獲圧(F)	
漁期年	(90%信頼区間)	(トン)	(90%信頼区間)	(90%信頼区間)	
2019	6.2 (4.5~8.4)	3,001	0.52 (0.34~0.70)	0.49 (0.36~0.66)	
2020	5.0 (3.6~7.0)	1,848	0.40 (0.26~0.54)	0.37 (0.26~0.51)	
2021	5.3 (4.0~7.3)	1,662	0.33 (0.22~0.44)	0.31 (0.23~0.42)	
2022	5.7 (4.3~7.5)	1,612	0.31 (0.20~0.41)	0.28 (0.21~0.38)	
2023	6.0 (4.6~8.0)	1,732	0.31 (0.20~0.41)	0.29 (0.22~0.38)	
2024	6.3 (4.6~8.4)	1,800	0.31 (0.20~0.41)	0.29 (0.21~0.38)	
2025	6.3 (4.6~8.6)	_	_	_	

- ・2024年漁期、2025年漁期の値は将来予測に基づく値である。
- ・各年の資源量は漁獲対象となる資源の量を示す。
- ・漁期年は8月~翌年7月である。
- ・漁獲量は観察値、資源量、漁獲圧および F/Fmsy は推定値。

1. データセット

本件資源評価に使用したデータセットは以下のとおり。

データセット	基礎情報、関係調査等
漁獲量*	主要港漁業種別水揚量(北海道) 北海道沖合底びき網漁業漁獲成績報告書(水産庁)
漁獲努力量	北海道沖合底びき網漁業漁獲成績報告書(水産庁)
資源量指標值*	沖底標準化 CPUE•道総研 VPA 資源評価結果

^{*}は余剰生産モデルによる資源量推定に用いたデータである。

2. 生態

(1) 分布·回遊

ソウハチは、カムチャッカ半島西岸、北千島から常磐沖にかけての太平洋沿岸、オホーツク海の北海道沿岸および日本海のほぼ全沿岸に加え、黄海にも分布している(渡辺 1956、北海道区底魚資源研究集団 1960)。ソウハチ道北系群の分布を図 2-1 に示す。本系群には、日本海で産卵されそのまま日本海北部で育つ群と、卵や仔魚期にオホーツク海に輸送され、成魚になると再び産卵のために日本海北部に回遊する群が存在すると考えられている(藤岡 2003)。

(2) 年齢・成長

各年齢(8月1日を誕生日とした満年齢)における雌雄別の全長と体重を図 2-2 に示す (板谷・藤岡 2006a)。雌雄ともに7歳以上の個体が採集されているため、寿命も7歳以上 と考えられる。

(3) 成熟·産卵

50%成熟全長は、雌で 217 mm、雄で 170 mm であり、半数以上の個体が成熟する年齢は、雌で 3 歳、雄で 2 歳である(板谷・藤岡 2006b)。また、主な産卵場は、美国~古平沖(水深 60~80 m)や増毛~留萌沖(水深 50~60 m)、武蔵堆周辺と考えられている(田中・日南田 1964、永澤 1990、北海道水産林務部水産局漁業管理課・北海道立総合研究機構水産研究本部 2019)。産卵期は 5~9 月におよぶが、中心は 7 月である(永澤 1990、富永ほか1993、Tominaga et al. 2000)。

(4) 被捕食関係

成魚は、イカナゴ類、タラ類幼魚、その他の小型魚類、オキアミ類、クモヒトデ類、多毛類、イカ類、エビ類および二枚貝類を捕食している(北海道区底魚資源研究集団 1960、田中・日南田 1964、水産庁研究部 1989)。捕食者は海獣類である(Goto et al. 2017)。

3. 漁業の状況

(1) 漁業の概要

本系群の大部分は、沖合底びき網漁業(以下、沖底)と沿岸の刺網漁業によって漁獲されており、2000年代までは沖底と沿岸漁業の漁獲量は同程度であったが、2010年代になると沿岸漁業による漁獲量が減少し、さらに 2016年漁期以降は沖底による漁獲が増えたことで、近年は沖底の占める割合が大きくなり 2023年漁期は7割を超える。沖底は主に9月~翌年4月に索餌群を、沿岸の刺網漁業は主に4~7月に産卵群を漁獲している。また、日本海に比べると、オホーツク海における漁獲量は非常に少ない。

(2) 漁獲量の推移

本系群の漁獲量を図 3-1 および表 3-1 に示す。沖底の漁獲量は、1980 年漁期には 2,302 トンであったが、1982 年漁期には 997 トンまで減少し、その後は増減を繰り返しながら推移している。2014 年漁期の漁獲量は集計開始以降で最低の 504 トンであったが、その後急増し、2019 年漁期には過去最高の 2,622 トンを記録した。その後は減少して推移し 2023 年漁期は 1,249 トンであった。ソウハチ狙いの操業をするかどうかは他の主要魚種(スケトウダラ、ホッケ、マダラなど)の漁獲動向や、市場の需要や魚価に依存している。特に 2016~2019 年漁期は小樽において海外向けの販路拡大で需要が高まったことから積極的にソウハチを狙う操業が行われたことが、漁業関係者への聞き取り調査によって明らかになっている。これに加え、これまで自主規制によりほとんど水揚げのなかった全長 23 cm 以下の小型個体が新しくできた銘柄「バラ」として多く漁獲されるようになった(中央水産試験場・稚内水産試験場 2024)。また、新型コロナウィルスの感染拡大および ALPS 処理水の海洋放出によって海外向けの需要が減少して 2019 年漁期後半以降は魚価が低下したために、現在は積極的な狙い操業は行われなくなった。これらの結果として 2015 年以降の比較的大きな漁獲量変動が生じたと推察される。

1985 年漁期以降の沿岸漁業(刺網漁業を含む)の漁獲量は、1980 年代後半から増加し、1991 年漁期には 1,860 トンに達した。その後は増減を繰り返しながらも長期的には減少傾向にあるが、2010 年頃から減少が大きくなり、2016 年漁期には 205 トンにまで減少した。2023 年漁期は 483 トンであった。沖底と沿岸漁業を合わせた漁獲量は、1992 年漁期に最大の 3,361 トンを記録したあとは減少して、2014 年漁期には前年の半分以下である 726 トンまで減少した。その後は急増して 2019 年漁期に 3,001 トンを記録したが、再び減少して推移し 2023 年漁期には 1,732 トンであった。

(3) 漁獲努力量

本系群の漁獲努力量として、漁獲の主体を占める沖底のかけまわし漁法における全操業網数およびソウハチが漁獲された有漁網数を月別船別漁区別データ(試験操業除く)に基づき示した(図 3-2、表 3-2)。全操業網数は、1980 年代には8万網を超える年もあったが大きく減少して推移し、2000 年漁期には3万網を下回った。その後も減少して推移して2023 年漁期は9,691 網となった。有漁網数は1980 年代前半に3万網前後を推移したが、1980 年代後半以降は増減を繰り返しながら減少して推移し、2023 年漁期は4,283 網であった。沿岸漁業の漁獲努力量については詳細を把握できていない。

(4) 漁獲物の年齢組成

北海道立総合研究機構(以下、道総研)が推定した雌雄別年齢別漁獲尾数を図 3-3 に示す。1990年代前半まで雄は雌と同程度の尾数が漁獲されていたが、1990年代後半以降 2010年代前半まではほとんど漁獲されなかった。雌では、1991年漁期まで2歳魚の漁獲が多くの割合を占めていたが、1992年漁期以降では2歳魚の漁獲はほとんど無くなり、3~4歳が漁獲の主体となった。この主な要因として、単価の安い小型魚の水揚を避けたことや、平成6(1994)年3月から関係漁業者間で取り組まれている海洋水産資源開発促進法に基づく資源管理協定による未成魚保護を目的とした漁獲制限などが考えられる(中央水産試験場・稚内水産試験場 2024)。しかし、2016~2017年漁期は雄の漁獲が増加して雌と同程度の尾数が漁獲された。この時期は雌においても一時的に2歳魚の割合が増加した。これは、沖底において自主規制により水揚がなかった全長23cm以下の小型個体を新たに出来た銘柄「バラ」として多く漁獲するようになったことが原因と考えられる(中央水産試験場・稚内水産試験場 2024)。雄の漁獲尾数と雌の2歳魚の割合は、2017年漁期から再び減少し、現在は2014年漁期以前と同レベルに戻っている。

4. 資源の状況

(1) 資源評価の方法

資源評価には、Pella-Tomlinson 型の状態空間余剰生産モデルである SPiCT(連続時間における確率的な状態空間余剰生産モデル: Pedersen and Berg 2017)を用いた(補足資料 1、2)。余剰生産モデルには漁期年(8月~翌年7月)で集計した 1985~2023 年漁期の漁獲量と、1985~2023 年漁期の沖底 CPUE および道総研が VPA によって推定した 1994~2014年漁期の雌の資源重量(中央水産試験場・稚内水産試験場 2024)から求めた雌雄全体の残存資源量を使用した。資源量指標値に使用した沖底 CPUE は標準化したものを使用した(補足資料 3)。標準化 CPUE の詳細は「令和 6(2024)年度ソウハチ道北系群の沖合底びき網漁業(かけまわし漁法)の CPUE 標準化について (FRA-SA2024-SC13-201)」(千葉ほか 2024)に示した。

資源状態の判断には、余剰生産モデルへの事前情報の与え方を変えた2つの基本モデル (補足表2-1) の結果を用いた。2つのモデルの結果を統合するにあたり、モデルごとに推定パラメータの精度を示す精度行列の逆行列の分散共分散行列を分散成分とした多変量正規分布から繰り返し計算分のパラメータセットをランダムに生成し、その中央値を代表値とした。また、5パーセンタイル値および95パーセンタイル値から90%信頼区間を算出した。資源評価で示す資源量や漁獲圧、MSYに関わる基準値の計算での繰り返し計算数(パラメータセット数) は各モデルで15,000 回ずつの合計30,000 回とした。使用した余剰生産モデルおよびパラメータ推定結果の詳細は補足資料2に示した。

(2) 資源量指標値の推移

余剰生産モデルに用いた資源量指標値を図 4-1 および表 4-1 に示した。沖底標準化 CPUE は、1990 年代にかけて減少して推移した後に 2000 年代は増加して推移し、2008 年漁期から 2014 年漁期にかけて大きく減少するが 2015 年漁期から増加に転じて 2016 年漁期に最大値を記録した。その後は減少して 2023 年漁期は 76.5 kg/網となった。道総研が VPA によ

って推定したソウハチの雌の資源量から推定した雌雄全体の残存資源量 D は、2008 年漁期にかけて増加した後に減少に転じたが、2010 年漁期から再び増加した。その後は2013、2014 年漁期に減少し、2015 年漁期は大きく増加した。

(3) 現在の環境下において MSY を実現する水準

余剰生産モデルのパラメータの推定値を、2つの基本モデルごとに補足資料 2 (補足表 2-2) に示す。推定された内的自然増加率 r は Model 1 で 0.63(90%信頼区間は 0.33~1.23、以下同様)、Model 2 で 0.71(0.44~1.14)であった。環境収容力 K は Model 1 で 9.4 千トン (7.1 千~12.6 千トン)、Model 2 で 9.5 千トン(7.4 千~12.3 千トン)であった。余剰生産曲線の形を定める形状パラメータ n は Model 1 で 0.62(0.26~1.50)、Model 2 で 0.83(0.48~1.43)であった。

現在の環境下において最大持続生産量 MSY を実現する資源量 Bmsy は、余剰生産量が最大になる際の資源量に相当し、Model 1 では 2.7 千トン(1.7 千~4.2 千トン)、Model 2 では 3.2 千トン(2.3 千~4.5 千トン)と推定された(図 4-2)。これらの基本モデルの推定結果から算出される代表値および 90%信頼区間は、2.9 千トン(1.8 千~4.2 千トン)であった(表 4-2)。

なお、Bmsy を維持する漁獲圧 (Fmsy) は、Model 1 で 1.01 (0.64 \sim 1.61)、Model 2 で 0.85 (0.60 \sim 1.20) と推定され (補足表 2-2)、その代表値は 0.93 (0.64 \sim 1.53) と算出された (表 4-2)。

(4) 資源量と漁獲圧の推移

余剰生産モデルでの2つの基本モデルの結果を統合した代表値では、資源量は1994年 漁期に 2.5 千トン(1.9 千〜3.4 千トン)まで減少した後は増加傾向に転じ、2010、2020 年 代は概ね 5.0 千トン以上で増減しながら推移している。直近年(2023 年漁期) は 6.0 千ト ン(4.6 千~8.0 千トン)となった(図 4-3、表 4-3)。漁獲圧は 1992 年漁期まで上昇した後 は低下傾向で推移したが、2015~2019 年漁期に若干上昇し、2020 年漁期から低下に転じ た。2023 年漁期の漁獲圧は 0.29(0.22~0.38)であった(図 4-4、表 4-3)。資源評価のモデ ルごとの結果によると、直近年の資源量は Model 1 で 5.9 千トン (4.5 千~7.7 千トン)、 Model 2 で 6.2 千トン (4.7 千~8.2 千トン) となった (補足資料 2)。同じく直近年の漁獲 圧は Model 1 で 0.30 (0.23~0.39)、Model 2 で 0.28 (0.21~0.37) であった。1995 年漁期以 降の資源の増加は、1994年漁期以降の漁獲圧の低下によると考えられ、この背景には1994 年3月から取り組まれている資源管理協定による小型魚の漁獲規制等があると推察される。 また、2015~2019年漁期の漁獲圧の上昇は、前述の通り小樽において海外向けの販路拡大 で需要が高まったことから積極的にソウハチを狙う操業が行われたことによる影響である と考えられる。前年度評価 (FRA-SA2024-AC067) において 2 つの基本モデルで推定され た 2022 年漁期の資源量は、Model 1 で 5.5 千トン (4.1 千~7.4 千トン)、Model 2 で 6.0 千 トン (4.4 千~8.1 千トン)、漁獲圧は Model 1 で 0.29 (0.22~0.39)、Model 2 で 0.27 (0.20 ~0.37) であった。 今年度評価における 2022 年漁期の資源量は、Model 1 で 5.5 千トン (4.2 千~7.2 千トン)、Model 2 で 5.9 千トン (4.4 千~7.8 千トン)、漁獲圧は Model 1 で 0.29 $(0.22\sim0.39)$ 、Model 2 で 0.28 $(0.21\sim0.37)$ であったことから、データが一年分追加され

たことによる推定値の変化は僅かであった。

(5) 資源の水準・動向および漁獲圧の水準

最大持続生産量を実現する資源量 Bmsy と、Bmsy を維持する漁獲圧 Fmsy との各年の資源量および漁獲圧の比を図 4-5、4-6 および表 4-4 に示す。現状の資源量(2023 年漁期の資源量)に対する Bmsy の比は 2.06(1.58~3.02)であり、90%信頼区間を含めて 1 を上回った。現状の漁獲圧(2023 年漁期の漁獲圧)に対する Fmsy の比は 0.31(0.20~0.41)であり、90%信頼区間を含めて 1 を下回った。Bmsy と Fmsy を基準にした神戸プロットを図 4-7 に示す。2 つの基本モデルごとの結果に基づく神戸プロットは補足資料 2 に示した。3 万回の繰り返し計算で求められた現状の資源量は全ての試行で Bmsy を上回り、現状の漁獲圧は全ての試行で Fmsy を下回る水準であると判断された。直近 5 年間(2019~2023 年漁期)の資源量の動向は横ばいと判断された。

5. 資源評価のまとめ

余剰生産モデルによる資源量推定結果から、ソウハチの資源量は 1995 年漁期以降長期的に増加傾向で推移して 2016 年漁期に最大となった。その後の資源量はやや減少して横ばいで推移し、最新年(2023 年漁期)の資源量は Bmsy を上回り、漁獲圧は Fmsy を下回っている。資源解析結果の概要として表 4-5 に代表値を、補足資料 7 に最新年の情報をまとめて示した。

6. その他

本系群では、平成 6 (1994) 年 3 月から海洋水産資源開発促進法に基づく資源管理協定によって、未成魚保護を目的とした全長 18 cm (体長 15 cm) 未満に対する漁獲制限が設けられ若齢魚の漁獲が避けられていたが、2016 および 2017 年漁期は若齢魚の漁獲が行われた。しかし、2018 年漁期以降は再び若齢魚を避けた漁獲が行われている。また、北海道資源管理方針(令和 2 (2020) 年制定、令和 6 (2024) 年 3 月改正)では、資源管理の方向性として現状の資源量以上に維持することとされており、国の資源管理基本方針および上記の北海道資源管理基本方針に基づき漁業者(本資源を漁獲する沿岸 14 漁協)が締結し、北海道が認定した資源管理協定では、操業期間や漁具、体長などの制限に取り組んでいる。本系群を持続的に利用するためには、引き続きこれらの資源管理協定による自主的管理を遵守して若齢魚への漁獲圧を現状程度に抑えることが重要である。

7. 引用文献

- 千葉 悟・佐藤隆太・森田晶子・境 磨・濱津友紀 (2024) 令和 6 (2024) 年度ソウハチ道 北系群の沖合底びき網漁業 (かけまわし漁法) の CPUE 標準化について. FRA-SA2024-SC13-201.
- 中央水産試験場・稚内水産試験場 (2024) ソウハチ (日本海~オホーツク海海域). 2024 年度北海道周辺海域における主要魚種の資源評価書,道総研水産研究本部,169-191.
- 藤岡 崇 (2003) ソウハチ.「新北のさかなたち」水島敏博・鳥澤 雅監修, 北海道新聞社, 北海道, 250-253.

- Goto, Y., Wada, A., Hoshino, N., Takashima, T., Mitsuhashi, M., Hattori, K., and Yamamura, O. (2017) Diets of Steller sea lions off the coast of Hokkaido, Japan: An inter decadal and geographic comparison. Mar. Ecol., **38**, e12477.
- 北海道区底魚資源研究集団 (1960) 「北海道中型機船底曳網漁業」. 北海道機船漁業協同組合連合会, 札幌, 318 pp.
- 北海道水産林務部水産局漁業管理課・北海道立総合研究機構水産研究本部 (2019) ソウハ チ 日本海~オホーツク海海域. 北海道水産資源管理マニュアル 2019 年度 http://www.pref.hokkaido.lg.jp/sr/ggk/sigen/manyual/11-15.pdf (last accessed 2020/8/13)
- 板谷和彦・藤岡 崇 (2006a) 石狩湾におけるソウハチの成長. 北水試研報, 70, 89-94.
- 板谷和彦・藤岡 崇 (2006b) 石狩湾におけるソウハチの成熟全長と年齢. 北水試研報, **70**, 81-87.
- 永澤 亨 (1990) 北部日本海域におけるソウハチ (Cleisthenes pinetorum herzensteini)の浮遊 生活期. 日水研報告, **40**, 15-25.
- Pedersen, M. W., and Berg, C. W. (2017). A stochastic surplus production model in continuous time. Fish and Fisheries, **18**, 226-243. https://doi.org/10.1111/faf.12174
- 水産庁研究部 (1989) 我が国漁獲対象魚種の資源特性 (I), 76 pp.
- 田中富重・日南田八重 (1964) 再び留萌沿岸のソウハチガレイの生活について-特に産卵前期と産卵期を中心として-. 北水試月報, 21, 9-25.
- 富永 修・渡辺安廣・土門和子 (1993) ソウハチ. 平成4年度北海道立中央水産試験場事業報告書,9-15.
- Tominaga, O., Watanobe, M., Hanyu, M., Domon, K., Watanabe Y., and Takahashi, T. (2000) Distribution and movement of larvae, juvenile and young of the pointhead flounder *Hippoglossoides pinetorum* in Ishikari Bay and vicinity, Hokkaido. Fish. Sci., **66**, 442-451.
- 渡辺 徹 (1956) 重要魚族の漁業生物学的研究. ソウハチ. 日水研報, 4, 249-269.

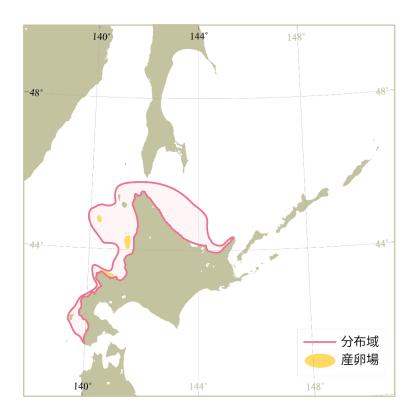


図 2-1. ソウハチ道北系群の分布

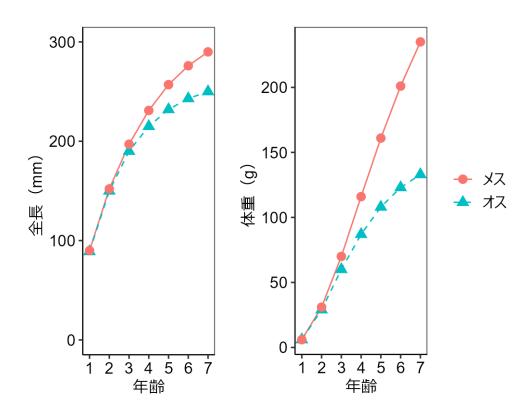


図 2-2. 年齢と成長の関係図(数値は板谷・藤岡(2006a)より引用)

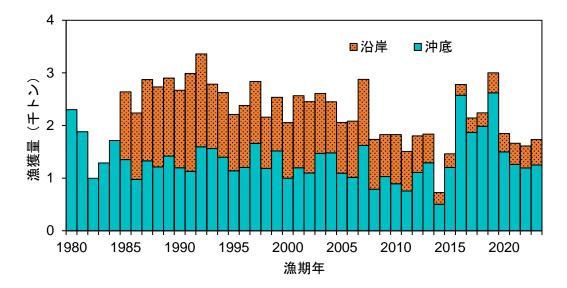


図 3-1. 漁獲量の推移(1984 年漁期以前の沿岸漁業漁獲量は未集計) 漁期年は8月~翌年7月。

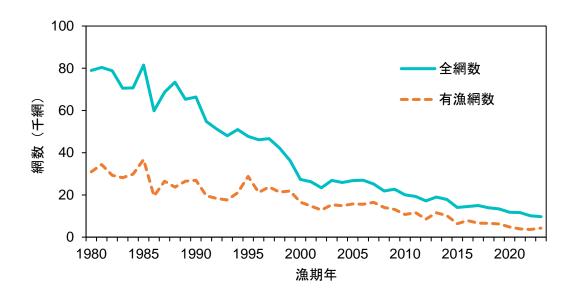


図 3-2. 沖底かけまわし漁獲努力量の推移

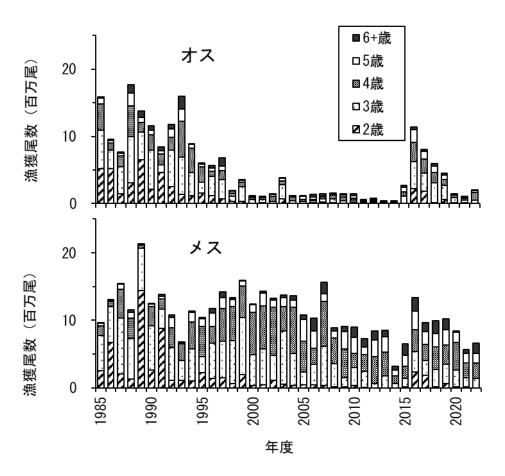


図 3-3. 雌雄別年齢別漁獲尾数 中央水産試験場・稚内水産試験場(2024)から引用

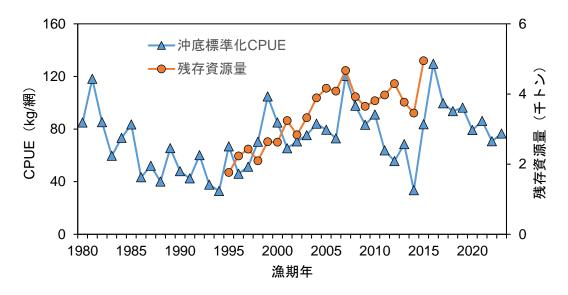


図 4-1. 沖底標準化 CPUE と VPA で推定された雌資源量から換算した雌雄全体の残存資源量

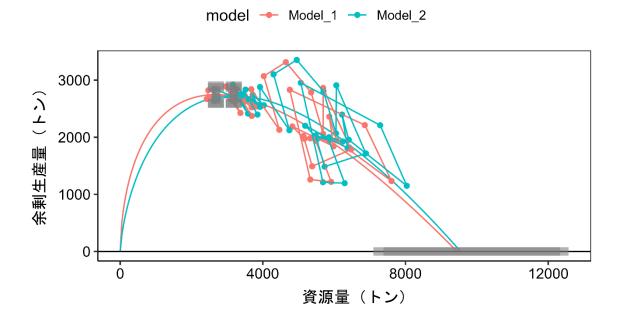


図 4-2. 資源量に対する余剰生産量の関係 (余剰生産量曲線) 灰色の網掛けは MSY と環境収容力の 90%信頼区間。

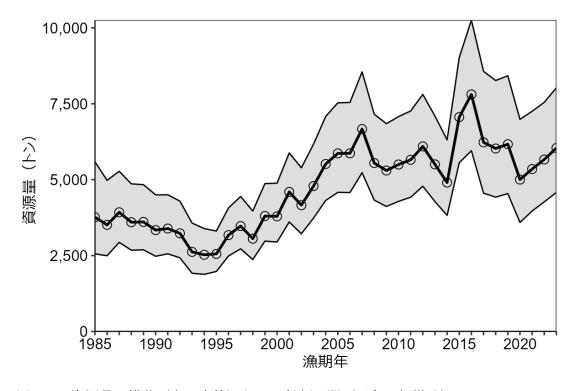


図 4-3. 資源量の推移(太い実線)と90%信頼区間(灰色の網掛け)

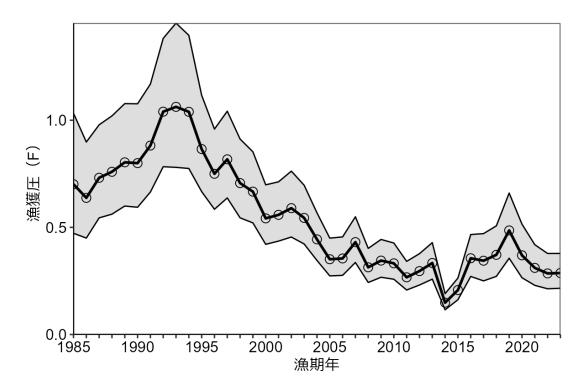


図 4-4. 漁獲圧 (F) の推移(太い実線) と 90%信頼区間(灰色の網掛け)

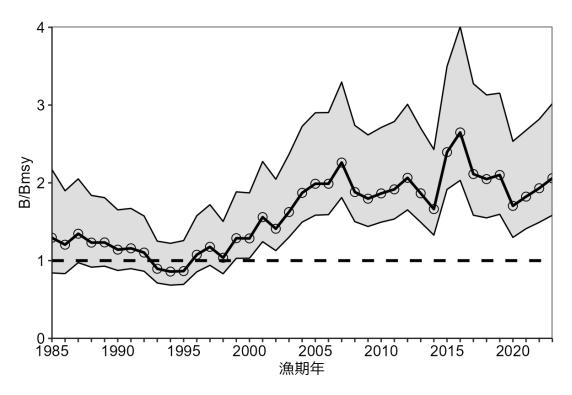


図 4-5. 最大持続生産量を実現する資源量 Bmsy と資源量の相対値の推移(太い実線) 灰色の網掛けは 90%信頼区間。

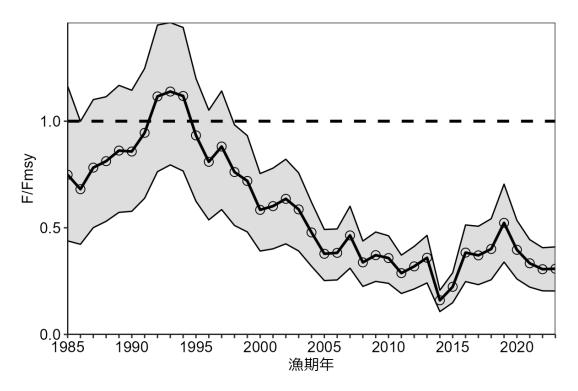


図 4-6. Bmsy を維持する漁獲圧 Fmsy と漁獲圧の相対値の推移(太い実線) 灰色の網掛けは 90%信頼区間。

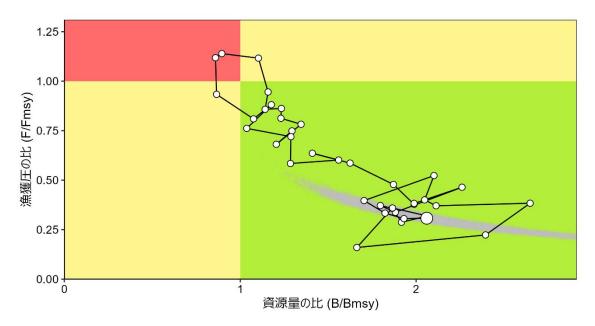


図 4-7. 神戸プロット

大きな白丸は2023年漁期の資源量と漁獲圧の関係。灰色の点は2023年漁期の資源量と漁獲圧の関係について、30,000回の繰り返し計算の結果を示す。

表 3-1. 漁獲量の推移 (トン)

)		沖底			沿岸		^ ⇒1
漁期年	オホーツク	日本海	小計	オホーツク	日本海	小計	合計
1980	196	2,106	2,302				
1981	102	1,781	1,883				
1982	137	860	997				
1983	112	1,176	1,288				
1984	296	1,417	1,713				
1985	122	1,231	1,353	17	1,271	1,287	2,640
1986	44	930	974	21	1,243	1,264	2,238
1987	36	1,293	1,329	21	1,523	1,544	2,873
1988	21	1,192	1,213	13	1,506	1,519	2,732
1989	199	1,219	1,419	35	1,446	1,481	2,900
1990	153	1,044	1,197	26	1,448	1,475	2,671
1991	74	1,057	1,130	36	1,824	1,860	2,990
1992	197	1,398	1,595	38	1,727	1,766	3,361
1993	39	1,522	1,561	40	1,185	1,224	2,785
1994	51	1,348	1,398	48	1,179	1,227	2,626
1995	119	1,021	1,140	115	954	1,069	2,209
1996	121	1,083	1,204	122	1,054	1,176	2,380
1997	105	1,556	1,661	66	1,109	1,175	2,836
1998	96	1,090	1,185	51	923	975	2,160
1999	174	1,344	1,518	69	949	1,018	2,536
2000	95	903	998	72	985	1,056	2,055
2001	87	1,111	1,198	69	1,299	1,367	2,566
2002	75	1,021	1,096	59	1,298	1,358	2,454
2003	108	1,362	1,470	91	1,048	1,139	2,609
2004	185	1,294	1,479	65	907	972	2,451
2005	143	952	1,095	45	917	962	2,058
2006	84	930	1,014	62	1,006	1,068	2,082
2007	134	1,487	1,621	81	1,175	1,256	2,877
2008	107	684	791	58	888	945	1,736
2009	45	985	1,030	45	752	797	1,827
2010	49	844	893	73	860	933	1,826
2011	47	708	756	57	694	751	1,506
2012	40	1,068	1,108	53	641	694	1,803
2013	40	1,251	1,291	43	502	545	1,836
2014	35	469	504	35	188	222	726
2015	69	1,133	1,202	49	212	261	1,463

表 3-1. (続き)

海地左	沖底				沿岸			
漁期年	オホーツク	日本海	小計	オホーツク	日本海	小計	一 合計	
2016	42	2,534	2,575	42	163	205	2,780	
2017	17	1,853	1,871	78	195	273	2,144	
2018	21	1,963	1,984	29	228	257	2,242	
2019	18	2,605	2,622	58	320	378	3,001	
2020	5	1,493	1,498	40	310	350	1,848	
2021	3	1,257	1,260	50	352	402	1,662	
2022	3	1,192	1,195	34	383	417	1,612	
2023	2	1,247	1,249	32	451	483	1,732	

漁期年は8月~翌年7月。

沖底漁業の集計範囲は中海区北海道日本海およびオコック沿岸(ロシア水域除く)。

沿岸漁業の集計範囲は奥尻からウトロまで。

2022、2023 年漁期は暫定値。

1984 年漁期以前の沿岸漁業漁獲量は未集計。

表 3-2. 沖底かけまわし漁法における漁獲努力量の推移

漁期年	全操業網数	有漁網数
1980	78,969	30,954
1981	80,436	34,367
1982	78,797	29,316
1983	70,562	28,173
1984	70,700	29,848
1985	81,513	36,748
1986	59,854	19,466
1987	68,669	26,526
1988	73,431	23,673
1989	65,273	26,468
1990	66,372	26,943
1991	54,789	19,565
1992	51,242	18,311
1993	48,004	17,590
1994	51,004	21,000
1995	47,703	28,776
1996	46,148	21,213
1997	46,631	23,758
1998	42,238	21,298
1999	36,246	21,863
2000	27,298	16,592
2001	26,268	14,716
2002	23,349	12,826
2003	26,900	15,323
2004	25,877	14,897
2005	26,818	15,690
2006	26,977	15,585
2007	25,206	16,472
2008	21,866	14,070
2009	22,693	13,123
2010	20,081	10,682
2011	19,310	11,614
2012	17,169	8,527
2013	19,018	11,525
2014	17,827	10,192
2015	14,091	6,358
2016	14,492	7,830

表 3-2. (続き)

漁期年	全操業網数	有漁網数
2017	14,985	6,600
2018	13,864	6,512
2019	13,388	6,243
2020	11,756	4,836
2021	11,593	3,874
2022	10,137	3,627
2023	9,691	4,283

月別・漁区別・船別データに基づく試験操業を除く通常操業の値。ただし、2015年漁期以降は一部の試験操業を通常操業とみなした。

表 4-1. 資源量指標値の推移

漁期年	沖底標準化 CPUE (kg/網)	残存資源量 D(トン)
1980	85.0	
1981	118.1	
1982	85.2	
1983	59.7	
1984	73.3	
1985	83.5	
1986	43.4	
1987	52.1	
1988	40.0	
1989	65.5	
1990	48.0	
1991	42.4	
1992	60.2	
1993	37.7	
1994	32.9	
1995	66.8	1,760
1996	46.0	2,233
1997	51.3	2,428
1998	70.3	2,096
1999	104.8	2,640
2000	85.0	2,626
2001	65.4	3,242
2002	70.6	2,835
2003	75.3	3,322
2004	84.1	3,890
2005	79.5	4,162
2006	72.9	4,081
2007	120.4	4,669
2008	97.7	3,919
2009	83.2	3,645
2010	91.1	3,807
2011	63.8	3,972
2012	55.7	4,294
2013	68.6	3,767
2014	33.5	3,454
2015	83.7	4,948
2016	129.6	

表 4-1. (続き)

漁期年	沖底標準化 CPUE(kg/網)	残存資源量 D(トン)
2017	99.5	
2018	93.6	
2019	96.3	
2020	79.2	
2021	86.2	
2022	70.7	
2023	76.5	

表 4-2. 最大持続生産量を実現する資源量および漁獲圧

項目	資源量 (千トン)	環境収容力 に対する比	漁獲圧	期待出来る 漁獲量 (千トン)	現状の漁獲 圧に対する 比
最大持続生産 量を実現する 資源量(Bmsy)	2.9 (1.8~4.2)	0.31 $(0.18 \sim 0.44)$	$0.93 \\ (0.64 \sim 1.53)$	2.7 (2.6~2.9)	3.25 (2.44~4.91)

余剰生産モデルの結果に基づき、最大持続生産量を実現する資源量(Bmsy)、およびそれの環境収容力 (K) に対する比、Bmsy を維持する漁獲圧 (Fmsy)、最大持続生産量 (MSY)、Fmsy の現状の漁獲圧に対する比(Fmsy/F2023)を示す。2 つの基本モデルによる推定結果から 30,000 回の繰り返し計算数分だけパラメータセットを再生成して算出した値の中央値を代表値として、5 パーセンタイル値と 95 パーセンタイル値を 90%信頼区間として示した。

表 4-3. 資源量と漁獲圧の推定値(代表値と 90%信頼区間)

海·坦·左		資源量(千トン)		漁獲圧	
漁期年	下限	代表値	上限	下限	代表値	上限
1985	2.6	3.8	5.6	0.47	0.70	1.03
1986	2.5	3.5	5.0	0.45	0.64	0.90
1987	2.9	3.9	5.3	0.54	0.73	0.98
1988	2.7	3.6	4.9	0.56	0.76	1.02
1989	2.7	3.6	4.8	0.60	0.80	1.08
1990	2.5	3.3	4.5	0.59	0.80	1.08
1991	2.6	3.4	4.5	0.66	0.88	1.17
1992	2.4	3.2	4.3	0.78	1.04	1.38
1993	1.9	2.6	3.6	0.78	1.06	1.45
1994	1.9	2.5	3.4	0.77	1.04	1.40
1995	2.0	2.6	3.3	0.67	0.87	1.12
1996	2.5	3.2	4.1	0.58	0.75	0.96
1997	2.7	3.5	4.4	0.64	0.82	1.04
1998	2.4	3.1	4.0	0.54	0.71	0.91
1999	3.0	3.8	4.9	0.52	0.67	0.85
2000	2.9	3.8	4.9	0.42	0.54	0.70
2001	3.6	4.6	5.9	0.44	0.56	0.71
2002	3.2	4.2	5.4	0.45	0.59	0.76
2003	3.7	4.8	6.2	0.42	0.54	0.70
2004	4.3	5.5	7.1	0.35	0.44	0.57
2005	4.6	5.9	7.5	0.27	0.35	0.45
2006	4.6	5.9	7.5	0.28	0.35	0.46
2007	5.2	6.7	8.6	0.34	0.43	0.55
2008	4.3	5.5	7.2	0.24	0.31	0.40
2009	4.1	5.3	6.8	0.27	0.34	0.44
2010	4.3	5.5	7.1	0.26	0.33	0.43
2011	4.4	5.7	7.3	0.21	0.27	0.34
2012	4.8	6.1	7.8	0.23	0.30	0.38
2013	4.3	5.5	7.1	0.26	0.33	0.43
2014	3.8	4.9	6.3	0.12	0.15	0.19
2015	5.6	7.1	9.0	0.16	0.21	0.26
2016	6.0	7.8	10.3	0.27	0.36	0.47
2017	4.6	6.2	8.6	0.25	0.34	0.47
2018	4.4	6.0	8.3	0.27	0.37	0.51
2019	4.5	6.2	8.4	0.36	0.49	0.66
2020	3.6	5.0	7.0	0.26	0.37	0.51

表 4-3. (続き)

漁期年	資源量(千トン)			資源量(千トン)				漁獲圧	
偶期午	下限	代表値	上限	下限	代表値	上限			
2021	4.0	5.3	7.3	0.23	0.31	0.42			
2022	4.3	5.7	7.5	0.21	0.28	0.38			
2023	4.6	6.0	8.0	0.22	0.29	0.38			

表 4-4. 資源量と Bmsy および漁獲圧と Fmsy の比 (代表値と 90%信頼区間)

漁期年 -		B/Bmsy			F/Fmsy	
	下限	代表値	上限	下限	代表値	上限
1985	0.84	1.29	2.17	0.44	0.75	1.17
1986	0.83	1.20	1.90	0.42	0.68	1.00
1987	0.97	1.35	2.05	0.50	0.78	1.10
1988	0.92	1.23	1.84	0.53	0.81	1.11
1989	0.93	1.23	1.81	0.57	0.86	1.17
1990	0.87	1.14	1.65	0.58	0.86	1.15
1991	0.90	1.16	1.67	0.64	0.95	1.25
1992	0.86	1.10	1.57	0.76	1.12	1.45
1993	0.71	0.90	1.25	0.80	1.14	1.46
1994	0.68	0.86	1.22	0.77	1.12	1.44
1995	0.69	0.87	1.26	0.62	0.93	1.20
1996	0.86	1.08	1.58	0.54	0.81	1.05
1997	0.94	1.18	1.72	0.59	0.88	1.14
1998	0.83	1.04	1.50	0.51	0.76	0.98
1999	1.03	1.29	1.88	0.48	0.72	0.93
2000	1.03	1.29	1.87	0.39	0.58	0.75
2001	1.24	1.56	2.27	0.40	0.60	0.78
2002	1.13	1.41	2.05	0.42	0.64	0.82
2003	1.30	1.62	2.37	0.39	0.59	0.76
2004	1.50	1.87	2.73	0.32	0.48	0.62
2005	1.58	1.99	2.90	0.25	0.38	0.49
2006	1.59	1.99	2.90	0.26	0.38	0.49
2007	1.81	2.26	3.30	0.31	0.46	0.60
2008	1.50	1.88	2.74	0.22	0.34	0.44
2009	1.44	1.80	2.62	0.25	0.37	0.48
2010	1.49	1.86	2.71	0.24	0.36	0.46
2011	1.53	1.92	2.79	0.19	0.29	0.37
2012	1.65	2.06	3.01	0.21	0.32	0.41
2013	1.49	1.87	2.70	0.24	0.36	0.46
2014	1.33	1.66	2.43	0.11	0.16	0.21
2015	1.92	2.39	3.50	0.15	0.22	0.29
2016	2.03	2.65	4.01	0.25	0.38	0.51
2017	1.58	2.11	3.28	0.23	0.37	0.51
2018	1.55	2.05	3.13	0.26	0.40	0.54
2019	1.60	2.10	3.15	0.34	0.52	0.70
2020	1.30	1.70	2.53	0.26	0.40	0.54

表 4-4. (続き)

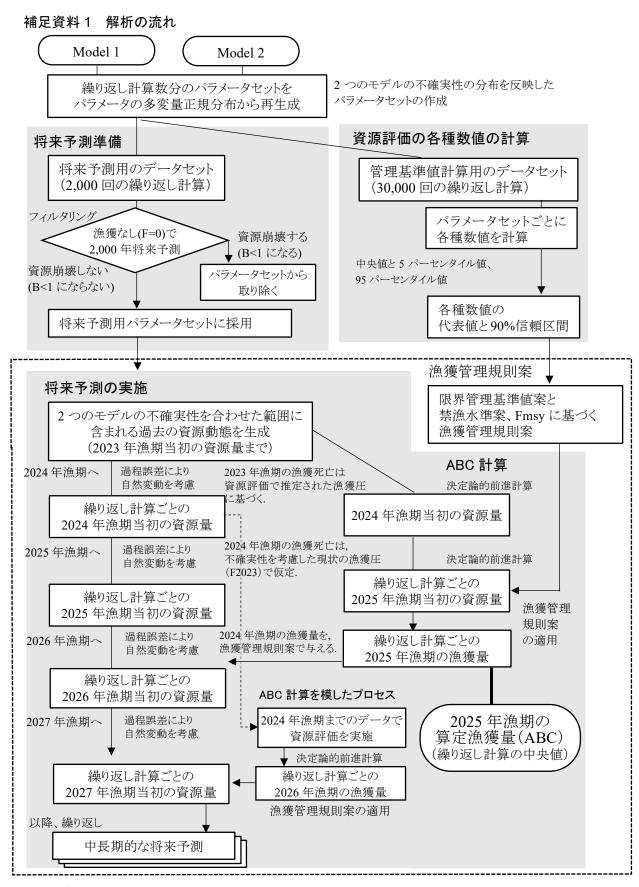

漁期年	B/Bmsy			F/Fmsy			
	下限	代表値	上限		下限	代表値	上限
2021	1.41	1.82	2.68		0.22	0.33	0.44
2022	1.49	1.93	2.82		0.20	0.31	0.41
2023	1.58	2.06	3.02		0.20	0.31	0.41

表 4-5. 資源解析結果(代表值)

漁期年	漁獲量 (千トン)	資源量 (千トン)	漁獲圧(F)	B/Bmsy	F/Fmsy
1985	2.6	3.8	0.70	1.29	0.75
1986	2.2	3.5	0.64	1.20	0.68
1987	2.8	3.9	0.73	1.35	0.78
1988	2.7	3.6	0.76	1.23	0.81
1989	2.9	3.6	0.80	1.23	0.86
1990	2.6	3.3	0.80	1.14	0.86
1991	2.9	3.4	0.88	1.16	0.95
1992	3.3	3.2	1.04	1.10	1.12
1993	2.7	2.6	1.06	0.90	1.14
1994	2.6	2.5	1.04	0.86	1.12
1995	2.2	2.6	0.87	0.87	0.93
1996	2.3	3.2	0.75	1.08	0.81
1997	2.8	3.5	0.82	1.18	0.88
1998	2.1	3.1	0.71	1.04	0.76
1999	2.5	3.8	0.67	1.29	0.72
2000	2.0	3.8	0.54	1.29	0.58
2001	2.5	4.6	0.56	1.56	0.60
2002	2.4	4.2	0.59	1.41	0.64
2003	2.6	4.8	0.54	1.62	0.59
2004	2.4	5.5	0.44	1.87	0.48
2005	2.0	5.9	0.35	1.99	0.38
2006	2.0	5.9	0.35	1.99	0.38
2007	2.8	6.7	0.43	2.26	0.46
2008	1.7	5.5	0.31	1.88	0.34
2009	1.8	5.3	0.34	1.80	0.37
2010	1.8	5.5	0.33	1.86	0.36
2011	1.5	5.7	0.27	1.92	0.29
2012	1.8	6.1	0.30	2.06	0.32
2013	1.8	5.5	0.33	1.87	0.36
2014	0.7	4.9	0.15	1.66	0.16
2015	1.4	7.1	0.21	2.39	0.22
2016	2.7	7.8	0.36	2.65	0.38
2017	2.1	6.2	0.34	2.11	0.37
2018	2.2	6.0	0.37	2.05	0.40
2019	2.9	6.2	0.49	2.10	0.52
2020	1.8	5.0	0.37	1.70	0.40

表 4-5. (続き)

漁期年	漁獲量 (千トン)	資源量 (千トン)	漁獲圧(F)	B/Bmsy	F/Fmsy
2021	1.6	5.3	0.31	1.82	0.33
2022	1.6	5.7	0.28	1.93	0.31
2023	1.7	6.0	0.29	2.06	0.31

※ 点線枠内は資源管理方針に関する検討会における議論をふまえて作成される。

補足資料 2 計算方法

本資源では、Pella-Tomlinson 型の状態空間余剰生産モデル(プロダクションモデル)である SPiCT (連続時間における確率的な状態空間余剰生産モデル: Pedersen and Berg 2017) を用いた資源解析に基づき資源状態を評価している。目標管理基準値案である最大持続生産量を実現する資源量 (Bmsy) や、漁獲管理規則での漁獲圧の上限となる Fmsy は、基本的には SPiCT での推定値に基づく。SPiCT の基本式およびパラメータを以下に示す。

(1) 状態空間余剰生産モデル

状態モデル

SPiCT では、直接観察されない資源量の時間変化(状態モデル)を以下のように表している。

$$dB_t = \frac{r}{n-1} B_t \left(1 - \left[\frac{B_t}{K} \right]^{n-1} \right) dt - F_t B_t dt + \sigma_B B_t dW_t \tag{1}$$

ここで B_t は時間 t での資源量、 F_t は時間 t での漁獲係数、r は内的自然増加率、K は環境収容力である。 $\sigma_B B_t dW_t$ は過程誤差(過程誤差)であり、 σ_B は過程誤差の標準偏差、 W_t はブラウン運動である。n は余剰生産曲線の形を規定する形状パラメータであり、その値が大きいほど環境収容力に対する Bmsy (最大持続生産量を実現する資源量)の相対的な位置が大きくなる。一般的にr と K には強い相関があることから、Fletcher (1978) による (2) 式への変形により、より安定した推定を実現している。

$$dB_t = \left(\gamma m \frac{B_t}{K} - \gamma m \left[\frac{B_t}{K}\right]^n - F_t B_t\right) dt + \sigma_B B_t dW_t \tag{2}$$

ここで γ は(3)式、mは(4)式の通りである。

$$\gamma = n^{n/(n-1)}/(n-1) \tag{3}$$

$$m = \frac{rK}{n^{n/(n-1)}} \tag{4}$$

資源評価期間の最初の年の資源量に関するパラメータとして、初期資源量の環境収容力に対する比 bkfrac も間接的に求められる。決定論的 $(\sigma_{B}=0)$ な個体群動態のもとでは、 (5) 式の通り m は最大持続生産量 MSY の値に相当する。また、決定論的な Bmsy および Fmsy はそれぞれ以下の (6) 式および (7) 式で表される。

$$MSY^d = m (5)$$

$$B_{msy}^d = n^{1/(1-n)}K (6)$$

$$F_{msy}^d = m/B_{msy} \tag{7}$$

一方、確率論的な MSY、Bmsy、および Fmsy はそれぞれ以下の (8) (9) (10) 式で表される。

$$MSY^{S} = MSY^{d} \left(1 - \frac{n/2}{1 - \left(1 - F_{msy}^{d} \right)^{2}} \sigma_{B}^{2} \right)$$
 (8)

$$B_{msy}^{s} = B_{msy}^{d} \left(1 - \frac{{}^{1+F_{msy}^{d}(n-2)/2}}{{}^{F_{msy}^{d}-\left(2-F_{msy}^{d}\right)^{2}}} \sigma_{B}^{2} \right)$$

$$\tag{9}$$

$$F_{msy}^{s} = F_{msy}^{d} - \frac{{}^{(n-1)(1-F_{msy}^{d})}}{{}^{(2-F_{msy}^{d})^{2}}} \sigma_{B}^{2}$$
(10)

形状パラメータnが1を下回る場合は確率論的なMSY、Bmsy、およびFmsyの推定値は不安定になるとされているため、Pedersen and Berg (2017) に従い、n>1 の場合には確率論的な値を、 $0<n\le 1$ の場合には決定論的な値を用いている。

SPiCT では、季節的な漁獲のプロセスを以下の(11)(12)式でモデル化しており、1年間を細かく区切った計算が可能である。

$$F_t = S_t G_t \tag{11}$$

$$d\log G_t = \sigma_F dV_t \tag{12}$$

ここで漁獲係数 F_t は漁獲の季節変化 S_t とランダムな効果 G_t から構成される。 σ_F は漁獲係数のノイズに関する標準偏差、 V_t はブラウン運動である。漁獲の季節変化をモデル化する場合は S_t に周期的な B スプライン曲線を仮定する等の方法がある。

観測モデル

SPiCT でのパラメータの推定に用いる指標値は以下の観測モデルで取り扱われる。

$$\log(I_{t,i}) = \log(q_i B_t) + e_{t,i} \tag{13}$$

$$e_{t,i} \sim N(0, \sigma_{t,i}^2) \tag{14}$$

SPiCT では複数の指標値を使用できる。 $I_{t,i}$ はi番目の指標値の時間 t における値である。 q_i は i 番目の指標値における漁獲効率パラメータである。 $e_{t,i}$ は i 番目の指標値の観測誤差であり、 $\sigma_{l,i}$ はその標準偏差である。

SPiCT では、漁獲量統計値の誤差に対応して、漁獲量も直接的に観察されない値として以下の(15)(16)式で推定できる。

$$\log(C_t) = \log\left(\int_t^{t+\Delta} F_s B_s ds\right) + \epsilon_t \tag{15}$$

$$\epsilon_t \sim N(0, \sigma_C^2)$$
 (16)

ここで ϵ_t は漁獲量の観測誤差であり、 σ_c はその標準偏差である。ただし本資源のモデルでは観察された漁獲量の誤差は相当に小さい(σ_c =0.01 で固定)と仮定している。

資源評価での推定パラメータ

SPiCT では余剰生産モデルのパラメータはベイズ推定の一種である罰則付き最尤法で推定する。本資源では、n、m、K、 q_i 、 B_t 、 F_t 、 σ_B 、 $\sigma_{l,i}$ 、 σ_F 、bkfrac を推定している。内的自然増加率 r は n、m、および K が推定されることで下式(17)により得られる。

$$r = m \left(\frac{K}{n^{(n/(n-1))}}\right)^{-1} \tag{17}$$

それぞれのパラメータには推定を行う前に既知の情報として事前分布を置くことや、予め 既知パラメータとして与えることが可能である。

(2) 資源評価での使用データとモデル設定 使用するデータセット

余剰生産モデルに用いる漁獲量として、 $1985\sim2023$ 年漁期の漁獲量集計値を用いた。前述の通り、SPiCT では漁獲量にも誤差が含まれていると仮定して推定することが出来るが、本資源のモデルでは観察された漁獲量の誤差は相当に小さいものと仮定した。指標値 I_1 として道総研が VPA で推定した雌の資源重量(中央水産試験場・稚内水産試験場 2024)を余剰生産モデルに適用させるために換算した $1995\sim2015$ 年漁期の残存資源量 D を用いた。これは、VPA に基づく推定資源量が余剰生産モデルで推定される資源量とは定義が異なることによる。VPA の資源量は、ある年において成長・加入等の資源増加が起きた後、かつその年の漁獲が発生する前の値である。一方、余剰生産モデルでの資源量は、ある年において余剰生産量が加わる前、かつその年の漁獲が発生する前の値であり、VPA では前年の漁獲および自然死亡で減じた後の残存資源量に相当する(補足図 2-1)。そこで、本検討では VPA の結果に基づき下式により余剰生産モデルと対比させるための全年の残存資源量 Dを求めた。

$$D_{y} = (B_{y-1} \cdot e^{\left(-\frac{M}{2}\right)} - C_{y-1})e^{\left(-\frac{M}{2}\right)}$$
(18)

ここで B_y は VPA で推定された y 年の資源重量、 C_y は y 年の漁獲量、M は VPA による解析において仮定された自然死亡係数 (0.25) であり、得られたDが余剰生産モデルで推定される資源量に相当する。本資源の場合は雌の資源重量が VPA によって推定されているため、By に雄の重量を足す必要がある。本解析では、雌雄の個体数比を 1:1、体重比を 1:0.8 と仮定して、雌の資源重量に 1.8 を積算した値を雌雄の資源重量とした。また、本資源では雄の漁獲状況が年代によって大きく異なり、上記の仮定から大きく外れる年代が生じると予想される。従って、雄の漁獲状況が比較的少ない状態で安定していた $1994\sim2014$ 漁期年の VPA によって推定された資源量から上記の計算によって $1995\sim2015$ 漁期年のDを求めた上で指標値 I_1 として解析に使用した。上記の通り本解析では雌の推定資源量から雌雄比に仮定をおいて雌雄全体の資源量を求めて指標値としているため、雌雄比の仮定の不確実性に起因して推定結果にも不確実性が生じている事には留意が必要である。指標値 I_2 として沖底かけまわし漁法の標準化 CPUE のうち、漁獲量集計値と同じ $1985\sim2023$ 年漁期の数値を平均値 1 として規格化して用いた。CPUE の標準化の詳細は「令和 6 (2024) 年度ソウハチ道北系群の沖合底びき網漁業(かけまわし漁法)の CPUE 標準化について(FRASA2024-SC13-201)」(千葉ほか 2024)に示した。

SPiCT では一年を細かく分けて季節的な情報をモデルに取り入れることができるが、本資源では1年に1つの漁獲・指標値のデータを用いており、季節的な情報をモデルに取り入れていない。そのため、モデルでの時間刻みも一般的な離散型の余剰生産モデルと同様に1年刻みの個体群動態になるように設定した(11 式では $S_{i=1}$ とした)。

パラメータの事前分布

SPiCT はベイズ推定の一種である罰則付き最尤法を用いるため、パラメータ推定の際には事前分布を与えることが出来る。全ての事前分布は平均値に対数を取った正規分布を仮

定している。一般的に形状パラメータ n は推定が困難であるため、本解析では n の事前分 布の平均値を n=2.00 として検討した。内的自然増加率 r の事前分布の平均値は FishLife (Thorson 2020) に基づき r=0.32 として検討した。Model 1 では n と r の対数正規分布に標 準偏差 1.00 を与えた緩い事前分布とし、Model 2 では標準偏差 0.50 を与えた狭い事前分布 を使用してパラメータ推定をおこなった(補足表 2-1)。また、全てのモデルにおいて指標 値 I_1 の漁獲効率パラメータ q_1 には平均値 1.00、標準偏差 0.30 の事前分布を与えた。漁獲効 率パラメータq1の事前情報の与え方の感度分析は2022年度の資料「令和4(2022)年度ソ ウハチ北海道北部系群の状態空間余剰生産モデルによる資源解析(FRA-SA2022-SC08-201)」 (千葉ほか 2022)において検討している。同様に全てのモデルにおいて観測誤差の大きさ σ_{II} には平均値 0.10、標準偏差 1.00 の事前分布を使用してパラメータ推定をおこなった。 σηは事前分布なしでパラメータ推定すると信頼区間が広く推定の安定性に問題があり、 2022 年度の検討結果 (FRA-SA2022-SC08-201) として平均値 0.15、標準偏差 0.50 の事前分 布を使用してパラメータを推定していたが、昨年度の資源評価会議においてこの事前分布 の与え方には検討の余地があることが有識者から指摘されていた。具体的には、平均値0.15 を与えているが実際にはこれより小さい可能性が高く、比較的狭い事前分布として与えて いるため必要以上に事前分布が影響している可能性が高い。そこで本年度はσ₁₁の事前分布 について再検討をおこなった。最初に σ_{l1} の標準偏差を 1.00 として、平均値を 0.01 から 3の事前分布を設定してパラメータを推定した。その結果、σ₁₁の推定値は事前分布の平均値 を 0.05 から 3 に設定した場合に 0.03~0.07 の値となり、信頼区間の上限は下限の 3~8 倍 の範囲となり安定性の問題がないことが確認された(補足図2-2)。一方、事前分布の平均 値を 0.01 とした場合に信頼区間の上限は下限の 24 倍となり推定の不安定さが示された。 以上から、信頼区間の幅が 10 倍未満となる事前分布における推定値の平均値 0.05 が事前 分布の平均値として適当であると判断した。 次に、σμの事前分布の平均値を 0.05 として標 準偏差を 0.50 から 2.00 に設定してパラメータを推定した。その結果、事前分布の標準偏 差を 0.50 とした場合の信頼区間の上限は下限の 4 倍、標準偏差を 2.00 とした場合の信頼 区間の上限は下限の 18 倍であった。事前分布の標準偏差の与え方によって信頼区間の幅 が決定されていることから、推定の不確実性を過小評価せず安定した推定が可能な条件と して、 σ_{11} の事前分布の設定は平均値 0.05、標準偏差 1.0 として解析した。その他の事前分 布の設定は昨年度評価と同様であり、 q_2 、 σ_B 、 $\sigma_{I,2}$ 、 σ_F 、bkfrac には事前分布を与えずに推定 している。

(3) 基本モデルでの推定結果と診断

推定値の妥当性の判断

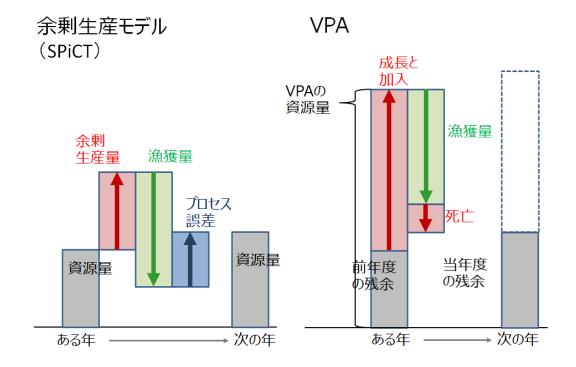
「状態空間プロダクションモデルの我が国資源への適用のためのガイドライン(FRA-SA2024-ABCWG02-07)」(水産研究・教育機構 2024)に基づき、SPiCT による資源計算結果のうち以下の2つのモデルにおいてモデル収束条件や推定パラメータの安定性・妥当性について大きな問題は認められず適切な推定値が得られたと判断し、資源評価に用いる基本モデルとした。パラメータ推定の結果は補足表 2-2 に示した。また、基本モデルごとの資源量と漁獲圧の推定値を補足表 2-3 に示した。

モデル診断

基本モデルの初期値への頑健性を確認するために、30 通りのランダムな初期値の組み合わせに対してモデルを推定させた。その結果、Model 1 と Model 2 で共に 6 個の初期値の組み合わせでモデルが収束しなかったが、収束した初期値の組み合わせにおける各パラメータの推定値は、初期値に関わらすモデル毎に同様のパラメータ推定値が得られており、基本モデルは初期値に対して頑健であることが確認出来た(補足図 2-3)

レトロスペクティブ解析の結果、2 つの基本モデルでは全ての年の推定値が得られ、資源量と Bmsy の比では顕著なレトロスペクティブバイアスは認められなかった(Mohn's ρ は-0.02~-0.01)(補足図 2-4)。漁獲圧と Fmsy の比においても顕著なレトロスペクティブバイアスは認められなかった(Mohn's ρ は 0.01~0.02)。モデル間でレトロスペクティブバイアスの顕著な違いは認められなかった。

指標値のあてはまりを残差分析により検討したところ、いずれも残差は正規分布の仮定によく当てはまっており、また、顕著な自己相関パターンは認められなかった(補足図 2-5)。指標値と後述する2つの基本モデルの推定結果を統合した推定資源量との関係は、指標値1(残存資源量)と推定された資源量の間でトレンドがよく一致していた(補足図 2-6)。指標値を用いたモデルの推定において特段の問題はないものと考えられた。

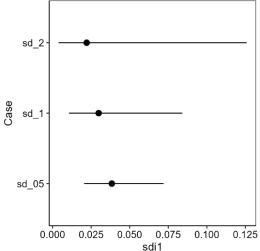

要因分析により、推定された資源変動が余剰生産・漁獲・プロセス誤差のいずれから影響されているかを検討した。資源変動はいずれも余剰生産と漁獲量で説明される部分が多く、プロセス誤差で説明される変動は僅かであった(補足図 2-7)。

(4) 基本モデルの結果の統合

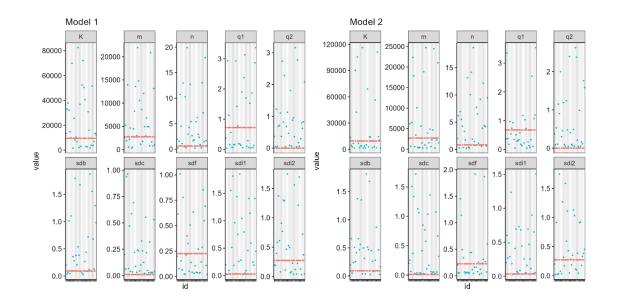
余剰生産モデルでは、モデルの構造上、Bmsy や Fmsy など、MSY に関係する資源量や 漁獲圧の数値は資源評価ごとに更新される。これらの管理基準値に対応する数値は、2 つ の基本モデルの結果を統合して求めた。また、資源評価の各種数値についても、2 つの基 本モデルの結果を統合して示した。統合した結果の算出にあたり、それぞれのモデルで推 定パラメータの分散共分散行列を作成し、パラメータ間の相関を考慮したパラメータセッ トの再生成を行った。具体的には、固定効果のパラメータであるn、m、K、 σ_B 、 σ_C 、 σ_F 、 σ_{IJ} 、 σ_{I2} 、 g_{I} 、 g_{2} と、ランダム効果のパラメータである $1985\sim2023$ 年漁期の B および F の 対数値からなるパラメータセットについて、多変量正規分布から繰り返し計算分だけパラ メータをランダムに生成することで、それぞれのモデルでの推定の不確実性の範囲に含ま れる資源動態とそのパラメータセットを得た。多変量正規分布で用いた分散は、それぞれ のモデルで推定された精度行列の逆行列である分散共分散行列を用いた。本資料では、2つ の基本モデルから同じ数だけ生成した繰り返し計算数分のパラメータセットでの中央値、 5パーセンタイル値、および95パーセンタイル値から、代表値および90%区間を求めてい る。繰り返し計算数は、資源評価の各種数値の算出には30,000回とした。図4-5に示した 神戸プロットは、資源評価の2つの基本モデルの結果を合わせたものである。基本モデル ごとの神戸プロットを補足図 2-8 に示す。資源評価に用いた 2 つの基本モデルでは、それ ぞれ同様の結果が得られ、直近年の資源量の Bmsy との比(B/Bmsy) の代表値は1を上回 り、直近年の漁獲圧の Fmsy との比 (F/Fmsy) の代表値も1を下回ると推定された。また、 資源状態および漁獲圧の動態とその信頼区間を補足図 2-9 に示した。

引用文献

- 千葉 悟・佐藤隆太・森田晶子・境 磨・濱津友紀 (2022) 令和 4 (2022) 年度ソウハチ北 海道北部系群の状態空間余剰生産モデルによる資源解析. FRA-SA2022-SC08-201.
- 千葉 悟・佐藤隆太・森田晶子・境 磨・濱津友紀 (2024) 令和 6 (2024) 年度ソウハチ道 北系群の沖合底びき網漁業 (かけまわし漁法) の CPUE 標準化について. FRA-SA2024-SC13-201.
- 中央水産試験場・稚内水産試験場 (2024) ソウハチ (日本海~オホーツク海海域). 2024 年度北海道周辺海域における主要魚種の資源評価書,道総研水産研究本部,169-191.
- Fletcher, R. I. (1978) On the restructuring of the Pella-Tomlinson system. Fishery Bulletin, **76**, 515-521.
- Pedersen, M. W., & Berg, C. W. (2017) A stochastic surplus production model in continuous time. Fish and Fisheries, **18**, 226-243.
- 水産研究・教育機構 (2024) 状態空間プロダクションモデルの我が国資源への適用のためのガイドライン. FRA-SA2024-ABCWG02-07. https://abchan.fra.go.jp/references_list/FRA-SA2024-ABCWG02-07.pdf
- Thorson, J. T. (2020) Predicting recruitment density dependence and intrinsic growth rate for all fishes worldwide using a data-limited life-history model. Fish and Fisheries, **21**, 237–251. https://doi.org/10.1111/FAF.12427

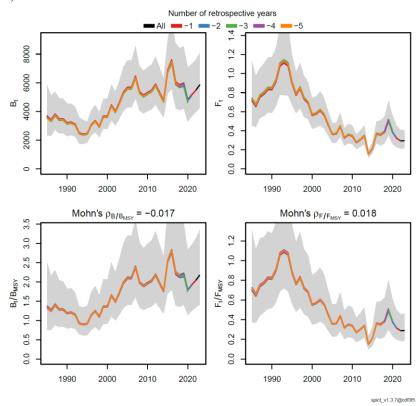

補足図 2-1. 余剰生産モデル (SPiCT) と VPA で推定される資源量の概念図

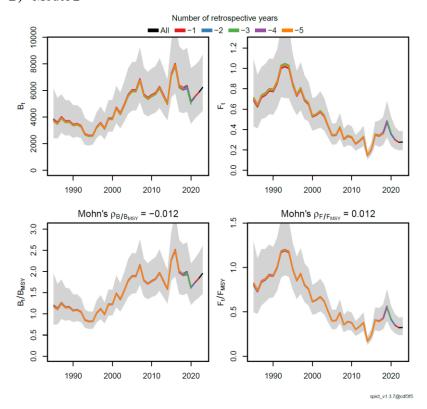
(A) 事前分布の平均値の検討



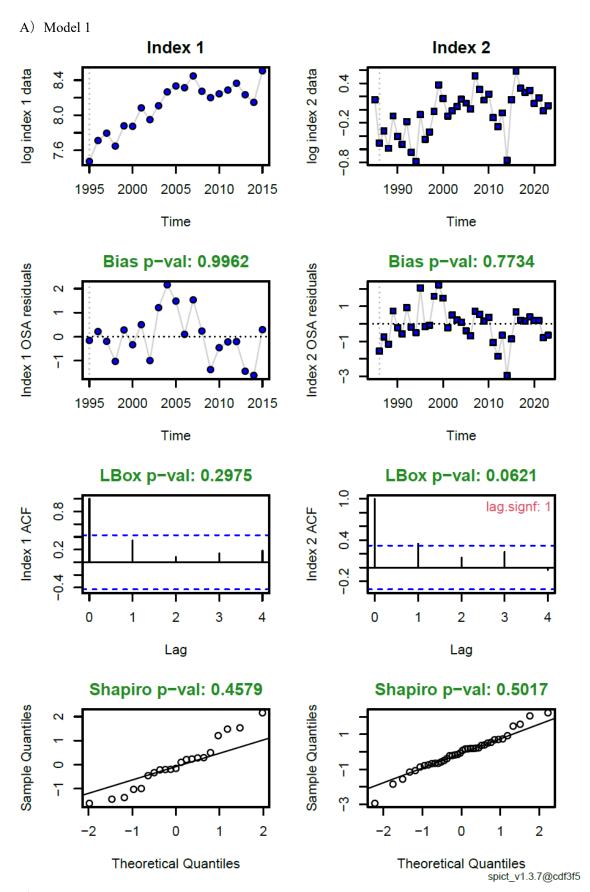
sdi1

(B) 事前分布の標準偏差の検討

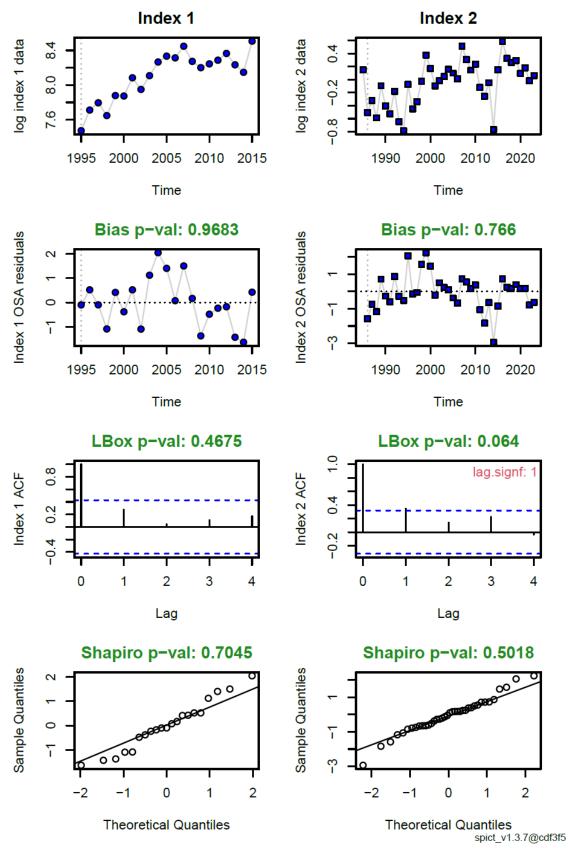

補足図 2-2. σ_{I1} の事前分布の再検討結果


補足図 2-3. 初期値に対する頑健性の診断結果

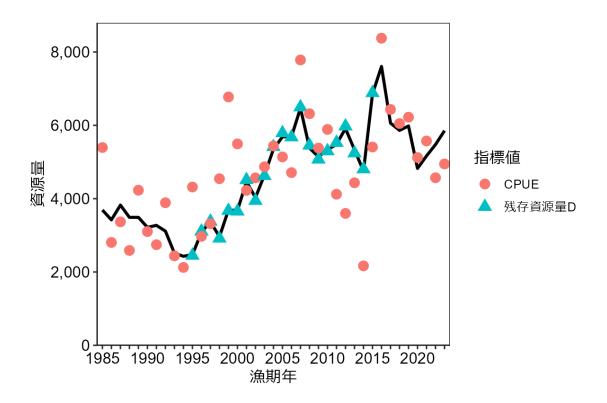
赤丸が各パラメータの推定値、青丸が初期値を示しており、横軸は左端がベースケースでその右にランダムな 30 通りの初期値で推定した結果が並んでいる。赤丸が抜けているケースでは計算が収束しなかったことを示している。


A) Model 1

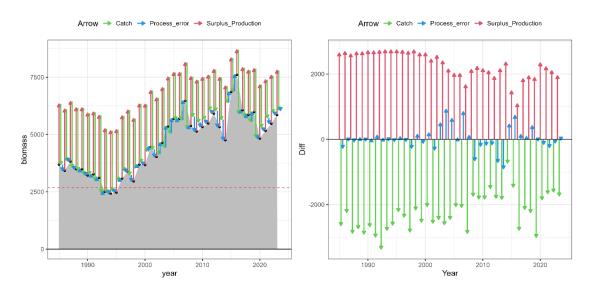
B) Model 2



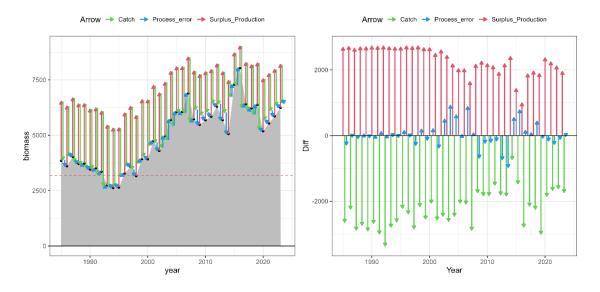
補足図 2-4. レトロスペクティブ解析の結果 灰色の網掛けは 90%信頼区間を表す。



補足図 2-5. 指標値の残差分析

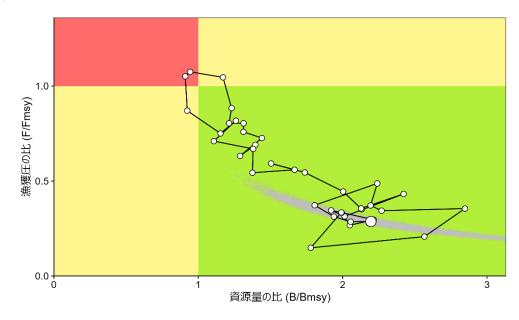


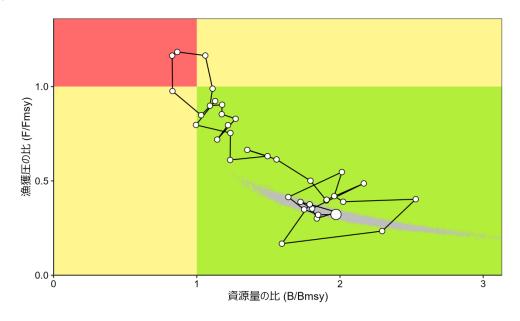
補足図 2-5. (続き)



補足図 2-6. 指標値(点)と推定資源量(黒実線)の関係 指標値はそれぞれの漁獲効率 q で割って資源量とスケールをそろえてある。

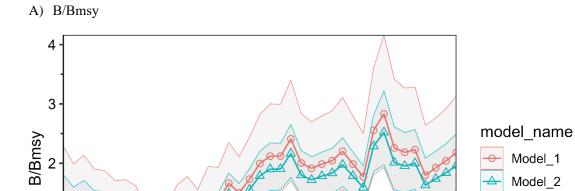
A) Model 1


B) Model 2


補足図 2-7. 基本モデル別の要因分解プロット

左図の灰色は資源量の推定値を示し、赤、緑、青の矢印がそれぞれ資源量の変動に対する余剰生産、漁獲、プロセス誤差の影響の大きさを示す。右図は基準を 0 とした場合の余剰生産、漁獲、プロセス誤差の影響の大きさを示す。

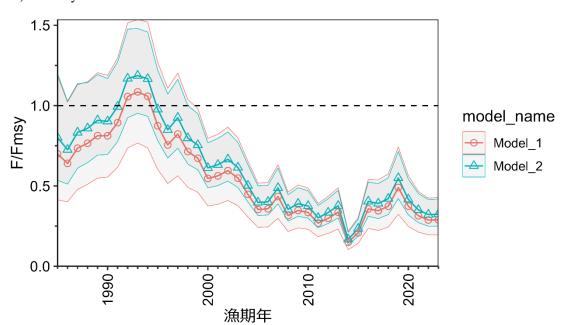
A) Model 1


B) Model 2

補足図 2-8. 基本モデル別の神戸プロット

大きな丸は 2023 年漁期の資源量と漁獲圧の関係。灰色点は 2023 年漁期の資源量と漁獲圧の関係について、モデルごとに 15,000 回の繰り返し計算がおこなわれた結果を表わす。

Model_2


2000

漁期年

1990

0

2010

2020

補足図 2-9. 基本モデル別の B/Bmsy、F/Fmsy の推移 灰色の網掛けは90%信頼区間を示す。

補足表 2-1. 各モデルにおける事前分布の設定

モデル名		\overline{n}	r			
	平均值	標準偏差	平均值	標準偏差		
Model 1	2.00	1.00	0.32	1.00		
Model 2	2.00	0.50	0.32	0.50		

全てのモデルで σ_{I1} に平均値 0.05、標準偏差 1.00、 q_1 に平均値 1.00、標準偏差 0.30、 σ_C に平均値 0.01、標準偏差 0.001 の事前分布を設定した。

補足表 2-2. 基本モデルで推定されたパラメータ

1// , 0 }		Model 1			Model 2				
推定パラメータ	下限 5%	推定値	上限 5%	下限 5%	推定値	上限 5%			
r	0.33	0.63	1.23	0.44	0.71	1.14			
K	7,100	9,400	12,600	7,400	9,500	12,300			
$ln\left(q_{1}\right)$	-0.56	-0.33	-0.10	-0.64	-0.39	-0.15			
$ln\left(q_{2}\right)$	-8.69	-8.45	-8.20	-8.77	-8.51	-8.26			
n	0.26	0.62	1.50	0.48	0.83	1.43			
$\sigma_{\!\scriptscriptstyle B}$	0.07	0.09	0.12	0.07	0.09	0.12			
$\sigma_{\!F}$	0.18	0.23	0.28	0.18	0.23	0.28			
$\sigma_{I.1}$	0.01	0.03	0.08	0.01	0.03	0.09			
$\sigma_{I,2}$	0.23	0.27	0.33	0.23	0.27	0.33			
MSY	2,600	2,700	2,900	2,600	2,700	2,900			
Bmsy	1,700	2,700	4,200	2,300	3,200	4,500			
B2023	4,500	5,900	7,700	4,700	6,200	8,200			
$B2023/B_{msy}$	1.52	2.18	3.14	1.54	1.96	2.49			
Fmsy	0.64	1.01	1.61	0.60	0.85	1.20			
F2023	0.23	0.30	0.39	0.21	0.28	0.37			
$F2023/F_{msy}$	0.20	0.29	0.43	0.25	0.32	0.42			

本資源では、基本モデルとした 2 つのモデルで n が 1 を下回ったため、Bmsy、Fmsy および MSY について決定論的な計算によって算出した。

各数値は百の位または小数点以下第2位まで有効として四捨五入した。

補足表 2-3. 基本モデルごとの資源量および漁獲圧の推定値と 90%信頼区間

A) Model 1

漁期年		資源量(千トン)	<u> </u>	漁獲圧			
你别干	下限	推定値	上限	下限	推定値	上限	
1985	2.5	3.7	5.4	0.49	0.72	1.05	
1986	2.4	3.4	4.8	0.47	0.65	0.92	
1987	2.9	3.8	5.1	0.56	0.75	1.00	
1988	2.6	3.5	4.7	0.58	0.78	1.05	
1989	2.6	3.5	4.6	0.62	0.83	1.11	
1990	2.4	3.2	4.3	0.62	0.83	1.11	
1991	2.5	3.3	4.3	0.69	0.91	1.20	
1992	2.4	3.1	4.1	0.82	1.08	1.42	
1993	1.9	2.5	3.4	0.82	1.11	1.50	
1994	1.8	2.4	3.2	0.81	1.08	1.44	
1995	1.9	2.5	3.2	0.70	0.89	1.14	
1996	2.4	3.1	3.9	0.61	0.77	0.98	
1997	2.7	3.4	4.3	0.67	0.84	1.06	
1998	2.3	3.0	3.8	0.57	0.73	0.93	
1999	2.9	3.7	4.7	0.54	0.69	0.87	
2000	2.9	3.7	4.7	0.44	0.56	0.71	
2001	3.5	4.5	5.6	0.46	0.58	0.73	
2002	3.1	4.0	5.1	0.48	0.61	0.78	
2003	3.7	4.6	5.9	0.44	0.56	0.71	
2004	4.2	5.4	6.8	0.36	0.46	0.58	
2005	4.5	5.7	7.2	0.28	0.36	0.46	
2006	4.5	5.7	7.2	0.29	0.37	0.46	
2007	5.1	6.5	8.2	0.35	0.44	0.56	
2008	4.2	5.4	6.8	0.25	0.32	0.41	
2009	4.0	5.1	6.5	0.28	0.36	0.45	
2010	4.2	5.3	6.8	0.27	0.34	0.44	
2011	4.3	5.5	7.0	0.22	0.27	0.35	
2012	4.7	5.9	7.5	0.24	0.30	0.39	
2013	4.2	5.3	6.8	0.27	0.34	0.44	
2014	3.7	4.8	6.0	0.12	0.15	0.19	
2015	5.4	6.9	8.6	0.17	0.21	0.27	
2016	5.9	7.6	9.9	0.28	0.37	0.47	
2017	4.5	6.1	8.2	0.26	0.35	0.48	
2018	4.3	5.9	7.9	0.28	0.38	0.52	
2019	4.4	6.0	8.1	0.37	0.50	0.68	

補足表 2-3. (続き)

漁期年	ì	資源量(千トン))	漁獲圧			
思别干	下限	推定値	上限		下限	推定値	上限
2020	3.5	4.8	6.7		0.28	0.38	0.53
2021	3.9	5.2	6.9		0.24	0.32	0.43
2022	4.2	5.5	7.2		0.22	0.29	0.39
2023	4.5	5.9	7.7		0.23	0.30	0.39

B) Model 2

漁期年	ì	資源量(千トン))		漁獲圧	
你别十	下限	推定値	上限	下限	推定値	上限
1985	2.6	3.8	5.7	0.47	0.69	1.01
1986	2.6	3.6	5.1	0.44	0.62	0.88
1987	3.0	4.0	5.4	0.53	0.71	0.96
1988	2.8	3.7	5.0	0.55	0.74	0.99
1989	2.8	3.7	5.0	0.58	0.78	1.04
1990	2.6	3.5	4.6	0.58	0.77	1.03
1991	2.7	3.5	4.6	0.65	0.85	1.12
1992	2.5	3.4	4.4	0.76	1.00	1.32
1993	2.0	2.7	3.7	0.75	1.02	1.37
1994	2.0	2.6	3.5	0.75	1.00	1.33
1995	2.0	2.6	3.4	0.65	0.84	1.08
1996	2.6	3.3	4.2	0.57	0.73	0.93
1997	2.8	3.6	4.6	0.62	0.79	1.01
1998	2.4	3.2	4.1	0.53	0.68	0.88
1999	3.1	3.9	5.0	0.50	0.65	0.83
2000	3.0	3.9	5.0	0.41	0.52	0.68
2001	3.7	4.7	6.1	0.42	0.54	0.69
2002	3.3	4.3	5.6	0.44	0.57	0.74
2003	3.9	4.9	6.4	0.41	0.53	0.68
2004	4.4	5.7	7.3	0.34	0.43	0.55
2005	4.7	6.1	7.8	0.27	0.34	0.44
2006	4.7	6.1	7.8	0.27	0.34	0.44
2007	5.4	6.9	8.8	0.33	0.42	0.53
2008	4.5	5.7	7.4	0.24	0.30	0.39
2009	4.3	5.5	7.0	0.26	0.33	0.43
2010	4.4	5.7	7.3	0.25	0.32	0.41
2011	4.6	5.8	7.5	0.20	0.26	0.33
2012	4.9	6.3	8.0	0.22	0.29	0.37

補足表 2-3. (続き)

海地左	j	資源量(千トン))	漁獲圧				
漁期年	下限	推定値	上限		下限	推定値	上限	
2013	4.4	5.7	7.3		0.25	0.32	0.42	
2014	3.9	5.1	6.5		0.11	0.14	0.18	
2015	5.7	7.3	9.3		0.16	0.20	0.26	
2016	6.1	8.0	10.6		0.26	0.35	0.45	
2017	4.7	6.4	8.8		0.24	0.33	0.46	
2018	4.6	6.2	8.5		0.26	0.36	0.49	
2019	4.7	6.4	8.7		0.35	0.47	0.64	
2020	3.7	5.2	7.2		0.26	0.36	0.50	
2021	4.1	5.5	7.5		0.22	0.30	0.40	
2022	4.4	5.9	7.8		0.21	0.28	0.37	
2023	4.7	6.2	8.2		0.21	0.28	0.37	

補足資料 3 沖合底びき網漁業(かけまわし漁法) CPUE の標準化

余剰生産モデルに用いる指標値として、北海道北部における沖合底びき網漁業(かけま わし漁法) の月別船別集計の漁獲成績報告書に基づき CPUE (1網あたりのソウハチ漁獲量 kg/網)の標準化をおこなった。本海域のソウハチ資源の動向に関係すると考えられる操業 データとして、稚内・枝幸・小樽の根拠地に限定し、さらに有漁操業データにおける水深 の分布の下側 5% (水深 340 m 以深に相当) を除去し、827,658 操業にフィルタリングした。 狙い操業の効果を考慮するため、フィルタリング後のデータに Direct Principal Component モデル(Winker et al. 2013)を採用し、狙いの効果をモデリングした。DPC モデルでは、漁 獲物組成データの主成分分析から得られた連続的な主成分スコアを、一般化加法モデル (GAM) の枠組みの中で非線形予測子として使用する。本資源は一般的に混獲種でありゼ ロキャッチデータが多いことから、ゼロデータをモデリングに加えることが可能で目的変 数に CPUE の連続変数を用いる Tweedie モデルを採用した。Type-III ANOVA と AIC、5fold cross-validation によって選択された説明変数は、漁期年(1980~2023 年漁期)、四半 期(8~10 月、11 月~翌年 1 月、2~4 月、5~7 月)、馬力階級(11 カテゴリ)、船型階 級(2 カテゴリ)、根拠地(稚内、枝幸、小樽)、第1主成分スコア、第2主成分スコア、 緯度経度、水深、太平洋 10 年規模気候変動指数の主効果および、漁期年と根拠地、四半期 と根拠地の交互作用項である。選択されたモデルにより推定された予測値の分布と観測値 の分布の間に大きな乖離は認められなかった(補足図 3-1)ため、これを最終モデルとし た。最終モデルと組み合わせ計算によって推定された標準化 CPUE の年トレンドを補足図 3-2 に示す。標準化の詳細は「令和 6(2024)年度ソウハチ道北系群の沖合底びき網漁業(か けまわし漁法)の CPUE 標準化について (FRA-SA-2024-SC16-101) 」 (千葉ほか 2024) に 示した。

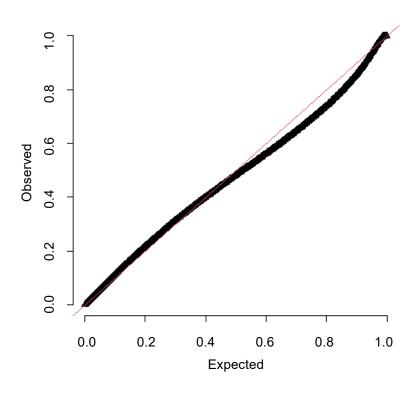
最終モデル

統計モデル:一般化加法モデル

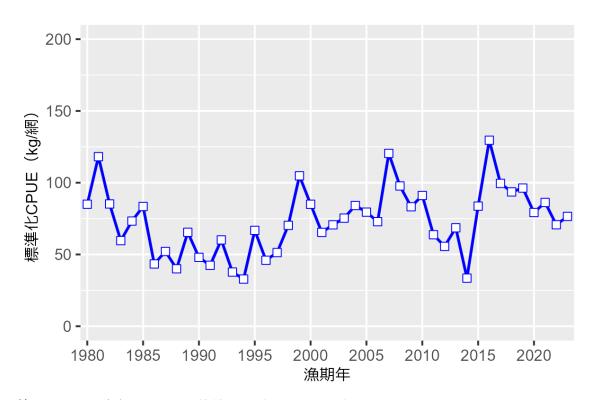
応答変数:CPUE

説明変数:FY、Quarter、HP class、Vessel class、Base、PC1*、PC2*、Lat:Lon*、

Dep*、PDO*、Base:FY、Base:Quarter (*平滑化スプライン)


リンク関数: log

冪乗パラメータ (p):1.59


引用文献

千葉 悟・佐藤隆太・森田晶子・境 磨・濱津友紀 (2024) 令和 6 (2024) 年度ソウハチ道 北系群の沖合底びき網漁業 (かけまわし漁法) の CPUE 標準化について. FRA-SA-2024-SC16-101.

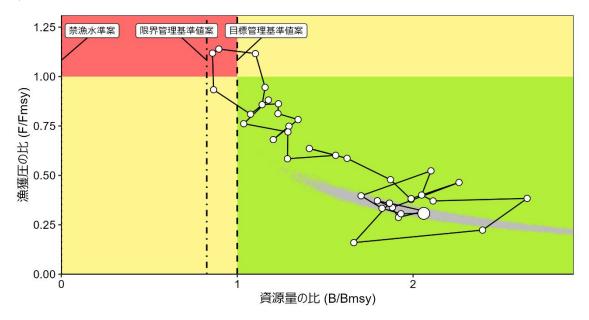
Winker, H., Kerwath, SE., and Attwood, CG. (2013) Comparison of two approaches to standardize catch-per-unit-effort for targeting behavior in a multispecies hand-line fishery. Fish. Res., **139**, 118-131.

補足図 3-1. 最終モデルの QQ プロット

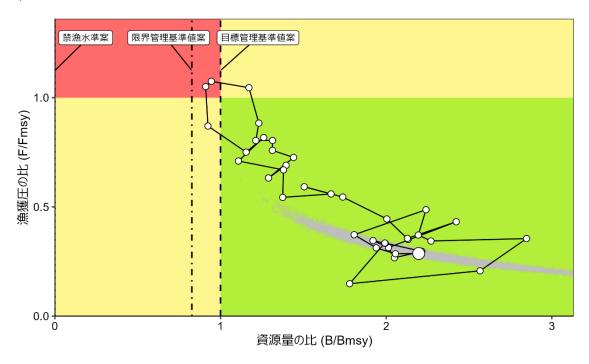
補足図 3-2. 沖底かけまわし漁法の標準化 CPUE の年トレンド

補足資料 4 管理基準値案と禁漁水準案等

令和5年5月に開催された「令和5 (2023) 年度ソウハチ北海道北部系群の管理基準値等に関する研究機関会議 (FRA-SA2023-BRP03-01)」(千葉ほか 2023) により、目標管理基準値には MSY を実現する資源量 (Bmsy)、限界管理基準値には資源評価において推定された 2021年漁期以前の資源量の最低値 (Bmin)、禁漁水準には0トンを用いることが提案されている (補足表 4-1)。

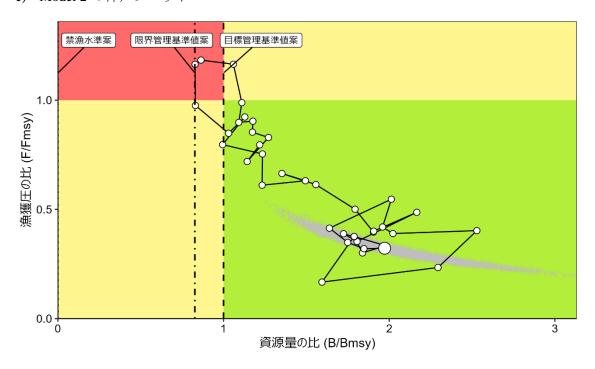

目標管理基準値案 (Bmsy) に対応する資源量は、本年度の資源評価では Model 1 では 2.7 千トン (1.7 千~4.2 千トン)、Model 2 では 3.2 千トン (2.3 千~4.5 千トン) と推定された (補足表 2-2)。これらの基本モデルの推定結果から算出される代表値および 90%信頼区間は、2.9 千トン (1.8 千~4.2 千トン) であった (補足表 4-1)。限界管理基準値案 (Bmin) に対応する資源量は、Model 1 では 2.3 千トン (1.8 千~3.1 千トン)、Model 2 では 2.5 千トン (1.9 千~3.3 千トン) と推定され、代表値は 2.4 千トン (1.8 千~3.3 千トン) と算出された (補足表 4-1)。

神戸プロットに目標管理基準値案、限界管理基準値案、および禁漁水準案を重ね描きしたものを補足図 4-1 に示す。現状の資源量(直近 2023 年漁期の資源量)に対する管理基準値案の比(2023 年漁期の資源量を各管理基準値案で割った値)は、目標管理基準値案である Bmsy に対して 2.06 (1.58~3.02)、限界管理基準値案である Bmin に対して 2.48 (2.04~3.04)であり、現状の資源量の代表値はいずれの管理基準値案も上回っている。


引用文献

千葉 悟・佐藤隆太・森田晶子・境 磨・市野川桃子・濱津友紀 (2023) 令和 5 (2023) 年度ソウハチ北海道北部系群の管理基準値等に関する研究機関会議. FRA-SA2023-BRP03-01. https://www.fra.go.jp/shigen/fisheries_resources/meeting/stok_assesment_meeting/2023/files/2023-03/fra-sa2023-brp03-01.pdf

a) 代表値に基づく神戸プロット



b) Model 1 の神戸プロット

補足図 4-1. 管理基準値案と資源量・漁獲圧との関係(神戸プロット)

c) Model 2 の神戸プロット

補足図 4-1. (続き)

補足表 4-1. 目標管理基準値案、限界管理基準値案、および禁漁水準案

管理基準値案	資源量 (千トン)	環境収容力に対する比	漁獲圧	期待できる 漁獲量 (千トン)	現状の漁獲圧に対する比
目標管理基準値案 (Bmsy)	2.9 (1.8~4.2)	$0.31 \\ (0.18 \sim 0.44)$	0.93 $(0.64 \sim 1.53)$	2.7 $(2.6\sim2.9)$	3.25 (2.44~4.91)
限界管理基準値案 (Bmin)	2.4 (1.8~3.2)	0.26 $(0.20 \sim 0.32)$	$1.10 \\ (0.82 \sim 1.47)$	2.7 (2.4 \sim 2.9)	3.85 (3.13~4.77)
禁漁水準案 (0トン)	0	0	-	0	-

余剰生産モデルの結果に基づき、各管理基準値案における、対応する資源量(B)、環境収容力(K)に対する比、対応する漁獲圧(F)、対応する漁獲圧の下で期待される漁獲量、対応する漁獲圧の現状の漁獲圧に対する比(F/F2023)を示す(目標管理基準値案に対応する資源量、それを維持する漁獲圧、期待出来る漁獲量はそれぞれ Bmsy、Fmsy、MSYに相当する)。2つの基本モデルによる推定結果から30,000回の繰り返し計算数分だけパラメータセットを再生成して算出した値の中央値を代表値として、5パーセンタイル値と95パーセンタイル値を90%信頼区間として示した。

補足資料 5 漁獲管理規則案に対応した将来予測

(1) 将来予測の設定

資源評価の各種数値の計算での基本モデルの結果の統合方法と同様に、将来予測でも 過去に推定された資源動態やパラメータの不確実性を考慮するため、2,000 回の繰り返し 計算ごとに再生成したパラメータセットごとに異なる資源動態をシミュレートした(補足 資料 1、2)。また、将来においても余剰生産モデルを毎年データにあてはめて資源評価を 更新するプロセスを再現するため、将来予測では年ごと・繰り返し計算ごとに後述する漁 獲管理規則案に基づく ABC 計算を模したプロセスを実行して、将来予測における漁獲量 を算出している。すなわち将来予測でも資源評価と同様に、前々年までにデータとして得 られた漁獲量および資源量指標値を用いて余剰生産モデル(SPiCT)での資源計算と 2 年 分の前進計算を行っている。この ABC 計算を模したプロセスでは、漁獲管理規則案で用い られる限界管理基準値案や Bmsy を維持する漁獲圧 (Fmsy) も資源計算の結果に基づき更 新する。2 年分の前進計算では資源量の自然変動に誤差を与えず、漁獲量は ABC 数量に相 当する漁獲圧で仮定している。このプロセスで算出された漁獲量を年ごと・繰り返し計算 ごとに与えたときの予測結果を、漁獲管理規則案に基づき漁獲した場合の将来予測とした。 将来予測は 15 年間実施したが、初年度である 2023 年漁期の漁獲圧は観測された実際の漁 獲量に基づく。2024 年漁期の漁獲量は繰り返し計算ごとに推定される 2023 年漁期の漁獲 圧で仮定し、漁獲管理規則案による管理は2025年漁期から開始するとした。なお、将来予 測での資源量には、ABC 計算を模したプロセスでの前進計算と異なり、繰り返し計算ごと に過程誤差に基づく自然変動を与えた。また比較のため、現状の漁獲圧(2023 年漁期)で の漁獲が継続した場合の結果も示した。このときの漁獲圧は上記のような SPiCT による繰 り返し計算は実施していない。将来予測の各種数値については、2,000回の繰り返し計算の 中央値を代表値、5 パーセンタイル値と 95 パーセンタイル値の間を 90%予測区間とした (補足資料 6)。

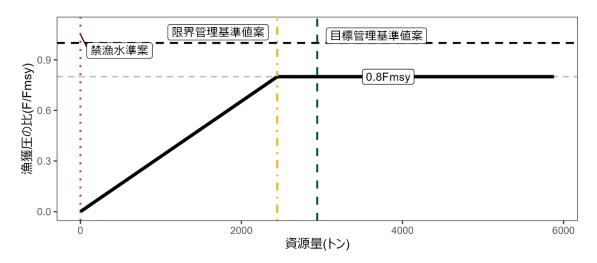
(2) 漁獲管理規則案

漁獲管理規則案は、目標管理基準値案以上への資源量の維持・回復を達成する確率を勘案して、資源量に対応した漁獲圧 (F) 等を定めたものである。資源量が限界管理基準値案以上にある場合には Fmsy に調整係数 β を乗じた漁獲圧とし、資源量が限界管理基準値案を下回った場合には禁漁水準案まで直線的に漁獲圧を削減する。本資源の「管理基準値等に関する研究機関会議」では調整係数 β には 0.8 が推奨されている (補足図 5-1)。

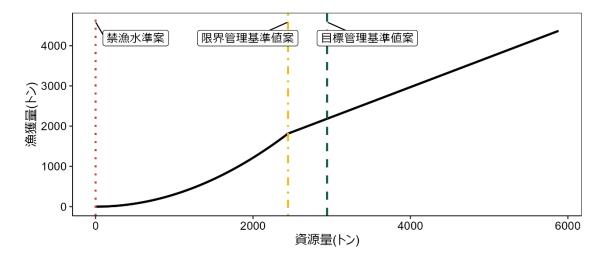
(3) 2025 年漁期の予測値

2025 年漁期の予測資源量に漁獲管理規則案を適用して求めた 2025 年漁期の算定漁獲量は、βを 0.8 とした場合には 4.7 千トン、1.0 とした場合には 5.9 千トンであった。2025 年漁期の予測資源量は、2,000 回の繰り返し計算のそれぞれで 2 つのモデルごとに資源量の自然変動の不確実性を考慮しない決定論的前進計算により算出した。その際、予測年の前年の漁獲は現状の漁獲圧(2023 年の F)で仮定した。この現状の漁獲圧には、繰り返し計算ごとに不確実性の範囲内で異なる値を用いた。それぞれの繰り返し計算において、2 つのモデルで算出された 2025 年漁期の予測資源量に対し、モデルごとに限界管理基準値案

である Bmin および禁漁水準案である資源量 0 トンとの位置関係から ABC 計算に用いる漁獲圧 βFmsy を決定し、これを 2025 年漁期の予測資源量と掛け合わせて 2025 年漁期の漁獲量を算出した。算出した漁獲量について、2 つのモデルの平均値を繰り返し計算ごとに求め、その代表値(中央値)を資源管理年の算定漁獲量とした。

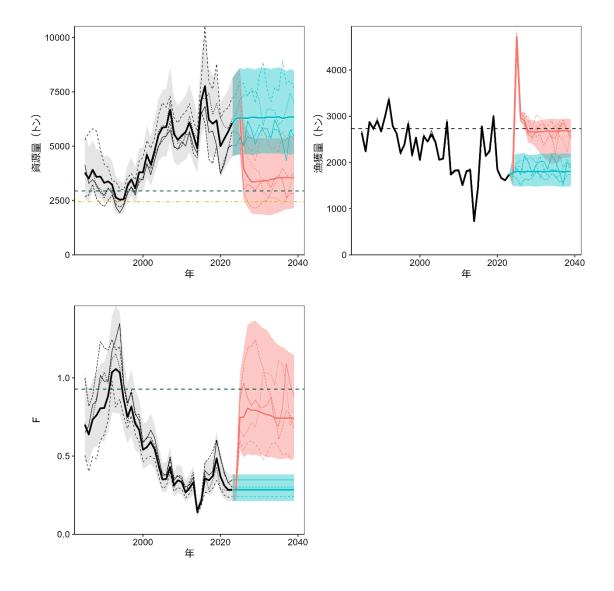

2025 年に予測される資源量は、全ての繰り返し計算で限界管理基準値案を上回った(代表値 6.3 千トン、90%予測区間 4.6 千~8.6 千トン)。

(4) 2026 年漁期以降の予測


2026 年以降も含めた将来予測の結果を補足図 5-2 および補足表 5-1、5-2、その概要を補足資料 7 に示す。漁獲管理規則案に用いる調整係数 β を 0.8 とした場合、2035 年漁期の資源量の代表値は 3.5 千トン(90%予測区間は 1.9 千~5.4 千トン、以下同様)であり、予測値が目標管理基準値案を上回る確率は 79%、限界管理基準値案を上回る確率は 92%となった。 β を 1.0 にした場合は、2035 年漁期の資源量の代表値は 3.0 千トン(1.3 千~5.2 千トン)であり、予測値が目標管理基準値案を上回る確率は 57%、限界管理基準値案を上回る確率は 73%となった。なお、現状の漁獲圧(F2023)を継続した場合は 2035 年漁期の資源量の代表値は 6.4 千トン(4.7 千~8.6 千トン)であり、予測値が目標管理基準値案および限界管理基準値案を上回る確率は共に 100%となった。

本資源の「管理基準値等に関する研究機関会議(FRA-SA2023-BRP03-01)」では、資源量が目標管理基準値案を上回る確率を 50%以上にする基準に加え、限界管理基準値案である Bmin を下回るリスクを一定以下に抑えるための閾値として、資源量が管理開始 10 年後に限界管理基準値案を上回る確率が 90%以上、10 年間で一度でも限界管理基準値案を下回る確率を 30%未満とすることが漁獲管理規則として推奨する基準とされた。「管理基準値等に関する研究機関会議(FRA-SA2023-BRP03-01)」ではこの基準によって調整係数 β は 0.8 が提案された。本年度の評価による 2035 年漁期の資源量が限界管理基準値案を上回る確率、および 10 年に一度でも限界管理基準値案を下回る確率に同じ基準を適用しても β は同じ 0.8 が選択される(補足表 5-3、5-4)。

a) 縦軸を漁獲圧にした場合



b) 縦軸を漁獲量にした場合

補足図 5-1. 漁獲管理規則案

目標管理基準値案は余剰生産モデルに基づき算出した Bmsy である。限界管理基準値案および禁漁水準案は、それぞれ Bmin および 0 トンである。本補足図では調整係数β に 0.8 を用いて漁獲管理規則案を図示した。黒破線は Fmsy、灰色破線は 0.8 Fmsy、黒太線は漁獲管理規則案、赤点線は禁漁水準案、黄一点鎖線は限界管理基準値案、緑破線は目標管理基準値案を示す。

補足図 5-2. 余剰生産モデルで推定されたパラメータと漁獲管理規則案に基づいて予測された将来の資源量、漁獲圧および漁獲量

青色の太い実線と網掛けは現状の漁獲圧 (F2023) で、赤色の太い実線と網掛けは調整 係数 β=0.8 とする漁獲管理規則案で漁獲した場合の予測された値の中央値と 90%予測 区間、黒の太い実線と灰色の網掛けは 2023 年漁期以前の推定された値の中央値と 90% 信頼区間、各色の細い線は反復計算の結果の例示である。緑破線は目標管理基準値案の水準、黄一点鎖線は限界管理基準値案の水準、赤点線は禁漁水準案を示す。漁獲量のパネルに示された黒破線は最大持続生産量 (MSY) の水準、漁獲圧 (F) のパネルに示された黒破線は最大持続生産量 (MSY) の水準、漁獲圧 (F) のパネルに示された緑色の破線は Fmsy 水準を示す。2024 年漁期の漁獲量は予測される資源量と現状の漁獲圧 (F2023) により仮定した。

補足表 5-1. 将来の資源量が目標・限界管理基準値案を上回る確率

a) 目標管理基準値案を上回る確率 (%)

β	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
1.0			68	50	37	40	41	46	50	54	56	57
0.9			83	66	53	54	55	56	60	63	65	67
0.8			92	82	73	74	73	73	75	76	78	79
0.7	100	100	97	93	89	90	90	90	90	90	90	91
0.6			99	98	98	98	98	98	98	98	98	98
0.5			100	100	100	100	100	100	100	100	100	100
現状の漁獲圧			100	100	100	100	100	100	100	100	100	100

b) 限界管理基準値案を上回る確率 (%)

ρ	2024	2025	2026	2027	2029	2020	2020	2021	2022	2022	2024	2025
β	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
1.0			92	76	58	61	60	64	66	69	72	73
0.9			97	88	77	76	75	76	79	80	82	83
0.8			100	96	91	91	91	90	90	90	91	92
0.7	100	100	100	100	98	98	98	98	98	98	98	98
0.6			100	100	100	100	100	100	100	100	100	100
0.5			100	100	100	100	100	100	100	100	100	100
現状の漁獲圧			100	100	100	100	100	100	100	100	100	100

β を $0.5\sim1.0$ で変更した場合の将来予測の結果を示す。2024 年漁期の漁獲量は現状の漁獲 圧(F2023)で仮定し、2025 年漁期から漁獲管理規則案による漁獲とした。比較のため現 状の漁獲圧(F2023, $\beta=0.31$ に相当)で漁獲を続けた場合の結果も示した。

補足表 5-2. 将来の資源量および漁獲量の代表値(中央値)の推移

a) 資源量の代表値(千トン)

β	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
1.0			3.3	2.9	2.6	2.6	2.6	2.8	2.8	2.9	2.9	3.0
0.9			3.6	3.2	3.0	3.0	3.0	3.0	3.1	3.1	3.2	3.2
0.8			4.0	3.6	3.4	3.4	3.4	3.4	3.4	3.5	3.5	3.5
0.7	6.3	6.3	4.3	4.0	3.8	3.8	3.8	3.9	3.9	3.9	4.0	4.0
0.6			4.8	4.5	4.4	4.3	4.4	4.4	4.4	4.4	4.5	4.4
0.5			5.3	5.0	4.9	4.9	5.0	5.0	5.0	5.0	5.0	5.0
現状の漁獲圧			6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.4

b) 漁獲量の代表値(千トン)

β	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
1.0		5.9	3.1	3.0	2.6	2.7	2.6	2.7	2.7	2.8	2.7	2.7
0.9		5.3	3.0	3.0	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
0.8		4.7	3.0	2.9	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
0.7	1.8	4.1	2.9	2.8	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6
0.6		3.5	2.7	2.6	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
0.5		3.0	2.5	2.4	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
現状の漁獲圧		1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8

βを $0.5\sim1.0$ で変更した場合の将来予測の結果を示す。2024 年漁期の漁獲量は現状の漁獲 圧(F2023)で仮定し、2025 年漁期から漁獲管理規則案による漁獲とした。比較のため現 状の漁獲圧(F2023, $\beta=0.31$ に相当)で漁獲を続けた場合の結果も示した。

補足表 5-3. 資源量が管理基準値案を上回る確率、予測される資源量・漁獲量の代表値 (中央値) のまとめ

		の目標確率	予測資源量	量の代表値 〜ン)	予測漁獲量の代表値 (千トン)			
β	資源量が	資源量が	5 年後	10 年後	1年目	2~5 年目 平均	6~10 年目 平均	
	目標管理 基準値案 を上回る	限界管理 基準値案 を上回る	2030 年 漁期	2035 年 漁期	2025 年 漁期	2026~ 2029 年 漁期	2030~ 2034 年 漁期	
1.0	57%	73%	2.6	3.0	5.9	2.9	2.7	
0.9	67%	83%	3.0	3.2	5.3	2.8	2.7	
0.8	79%	92%	3.4	3.5	4.7	2.8	2.7	
0.7	91%	98%	3.8	4.0	4.1	2.7	2.6	
0.6	98%	100%	4.4	4.4	3.5	2.6	2.5	
0.5	100%	100%	5.0	5.0	3.0	2.4	2.3	

補足表 5-4. 10年間に一度でも起きる確率のまとめ

β	資源量が水準を下回るリスク (10年間に1度でも起きる確率)						
	B0.1msy	B0.2msy	B0.6msy	B0.7msy	B0.8msy	B0.9msy	Bmin
1.0	0%	0%	5%	11%	19%	31%	71%
0.9	0%	0%	4%	6%	12%	18%	48%
0.8	0%	0%	2%	3%	4%	8%	22%
0.7	0%	0%	0%	1%	1%	2%	6%
0.6	0%	0%	0%	0%	0%	0%	1%
0.5	0%	0%	0%	0%	0%	0%	0%

補足資料 6 管理基準値案および将来予測の計算方法

(1) 管理基準値案の計算

補足資料 2 で述べたように、MSY に関係する資源量や漁獲圧の数値(Bmsy と、Fmsy)は 2 つの基本モデルの結果を統合して求めた。すなわち、再生成したパラメータセットのうちn、m、K と、これらから(17)式で算出されるr、および σ_B により、繰り返し計算分だけ(5)~(10)式に基づき求め、目標管理基準値案に対応する数値を更新した。また、限界管理基準値案に対応する資源量(Bmin)についても繰り返し計算ごとに求め更新した。これらの資源量は、それぞれ一定の F_t および B_t の下では平衡状態の資源量($E(B \bowtie | F_t)$)が以下の(23)式で近似できること(Pedersen and Berg 2017)、および(24)式に示される漁獲量と資源量および漁獲圧の一般的な関係に基づき、 C_t が MSY のx%となる漁獲量の場合の漁獲圧 F_t および平衡状態の資源量($E(B \bowtie | F_t)$)として探索的に求めた。

$$E(B_{\infty}|F_{t}) = K \left(1 - \frac{(n-1)}{n} \left(\frac{F_{t}}{F_{msy}^{d}}\right)\right)^{1/(n-1)} \cdot \left(1 - \frac{n/2}{1 - \left(1 - n \cdot F_{msy}^{d} + (n-1)F_{t}\right)^{2}} \sigma_{B}^{2}\right)$$

$$C_{t} = B_{t} \cdot F_{t}$$
(23)

ただし、n<1 の場合には $\sigma_B=0$ としたときの式を用いた。補足資料 5 では、これらの数値について、繰り返し計算の中央値を代表値として、5 パーセンタイル値、および 95 パーセンタイル値から求めた 90%信頼区間と合わせて示した。

(2) 将来予測

繰り返し計算ごとに、多変量正規分布から再生成したパラメータセットに基づく資源動態を用いて将来予測を行った。将来予測での前進計算では、余剰生産や漁獲死亡は Pedersen and Berg (2017) に従い Lamperti 変換した (25) 式を用いて考慮した。

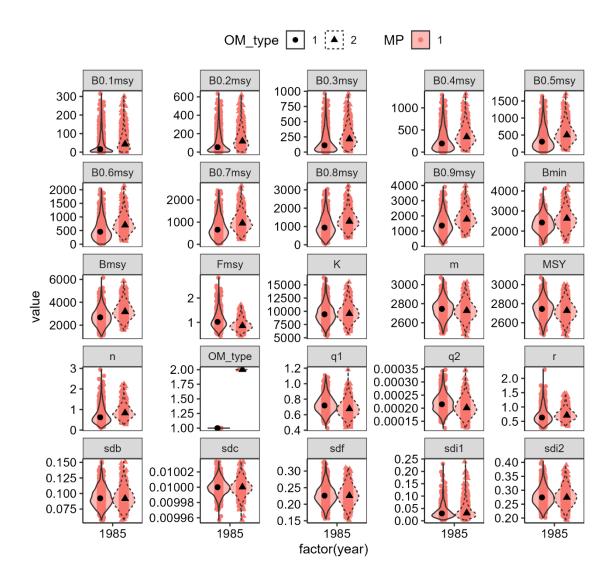
$$dZ_t = \left(\gamma \frac{m}{\kappa} - \gamma \frac{m}{\kappa} \left[\frac{\exp(Z_t)}{\kappa} \right]^{n-1} - F_t \right) dt \tag{25}$$

ここで、 Z_t は $\ln(B_t)$ である。また、 F_t は将来予測において漁獲管理規則案等で定められる漁獲量 C_t とその時の資源量 B_t により求められる。前進計算では資源量の自然変動も過程誤差 σ_B により与えられるため、翌年漁期の資源量 B_{t+1} は(26)式となる。

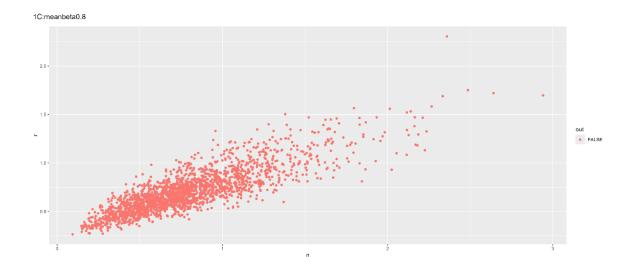
$$B_{t+1} = \exp(Z_t + dZ_t) \exp(\varepsilon_t) \tag{26}$$

なお、 $\varepsilon_t \sim N(-0.5\sigma_B^2, \sigma_B^2)$ である。繰り返し計算ごとに再生成したr、K、n、 σ_B と、これらにより(3)(4)式で算出した γ とmにより、上記の資源動態が定まる。

将来予測に資源評価の不確実性を考慮するため、将来予測の開始時点の資源状態(資源量や漁獲圧)についても、繰り返し計算ごとに再生成した値を用いた。多変量正規分から生成されるパラメータセットには極端な資源動態を示すものもある。そのため、まず繰り返し計算ごとに漁獲が無い場合 (F=0) の将来予測を 2,000 年間行い、漁獲が無いにもかか

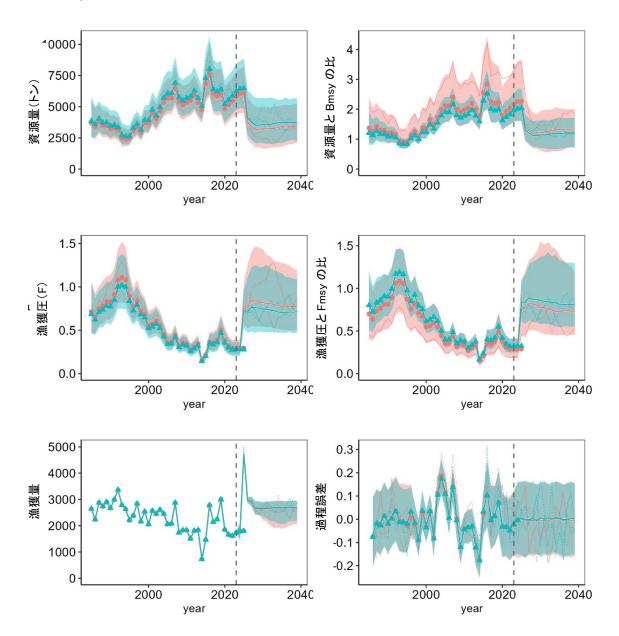

わらず資源が崩壊する (B<1) 資源動態を示したパラメータの組み合わせを、将来予測での繰り返し計算で使用するパラメータセットから除外した。将来予測用に再生成したパラメータセットの分布を補足図 6-1 に、除外したパラメータセットを補足図 6-2 に示す。なお、本資源においてこれによって除外されたパラメータセットは無い。

漁獲管理規則に基づく ABC 計算では、ABC を定める年(ABC 年)の前々年までの漁獲 量および資源量指標値を用いて資源評価を行い、さらに2年分の前進計算により得た ABC 年の資源量を漁獲管理規則に当てはめることで ABC となる漁獲量を算定する。本資料で は、この ABC 計算を模したプロセスも将来予測の中に組み込むことで、将来の資源評価の 不確実性も考慮した。すなわち、将来予測の各年において、繰り返し計算ごとに、前々年 までの漁獲量と資源量指標値を入力データとした SPiCT での資源量推定((1)~(14)式 を使用)と、2年間の前進計算((25)(26)式を使用、ただし過程誤差は仮定しない)を行 い、得られた資源量を漁獲管理規則案に当てはめて将来予測における漁獲量を定めた。こ のとき使用する資源評価期間(1985~2022年漁期)の漁獲量は、繰り返し計算毎にそれぞ れ微小な観測誤差を加味したものである。資源評価期間の資源量指標値については観測値 を用いた。将来予測期間の漁獲量および資源量指標値はともに繰り返し計算ごとに異なる 予測値となる。 漁獲量は ABC 計算を模したプロセスで算出された値を使用し、資源量指標 値は(13)(14)式に基づき、予測される各年の資源量(B_t)と漁獲効率 q_i およびランダム な観測誤差 e_{ij} (標準偏差は σ_{ij})により求めた。将来予測における ABC 計算を模したプロ セスでは、前進計算では過程誤差による資源量の自然変動は与えていない (σ_B =0)。また、 初回の漁獲管理規則案での漁獲量の算定時を除き、前進計算時に与える漁獲死亡はそれぞ れの繰り返し計算ごとに漁獲管理規則案で算出された各年の漁獲量とした。初回の漁獲管 理規則案での漁獲量の算定時は、2023 年漁期の漁獲死亡は観測誤差を考慮しない観察され た漁獲量に基づいた。2024年漁期の漁獲死亡は2023年漁期の漁獲圧(F2023)で仮定した。 なお前述の通り、F2023 は繰り返し計算ごとに再生成した値である。


将来予測における各年の資源量は、上記の ABC 計算を模したプロセスで予測された漁獲量から (25) (26) 式に基づき繰り返し計算ごとに算出した。その際、算出される漁獲圧 F が非現実的に大きくならないように、各年の F の上限を Fmsy の 2 倍とする制約を与えた。また、将来において状態空間モデルを繰り返しあてはめて推定を行う際、モデルが収束せずに ABC 計算ができない場合には前年に計算された ABC と同じ値をその年の ABC として用いるとした。本資料の将来予測で示した資源量および漁獲量の代表値は、この繰り返し計算で得られた値の中央値である。また、将来予測の各種数値の 90%予測区間は、繰り返し計算で得られた値のちパーセンタイル値および95パーセンタイル値から求めた。これらは資源評価の 2 つの基本モデルから推定されたパラメータに基づいて生成された 2 タイプの OM での結果を合わせたものである。OM タイプ毎に色分けした将来予測結果を補足図 6-3 に示す。これによると OM タイプの違いによる資源量や漁獲圧、漁獲量の絶対値および過程誤差に対する差は小さいが、B/Bmsy や F/Fmsy の信頼区間において OM タイプ1 では広くなる傾向にあった。将来予測の計算方法の詳細は「状態空間プロダクションモデルによる資源量推定結果を用いた管理戦略評価・将来予測手法: ソウハチ・マガレイ北海道北部系群への適用 (FRA-SA2023-BRP03-101)」(市野川ほか 2023) に示した。

引用文献

- 市野川桃子・千葉 悟・境 磨 (2023) 状態空間プロダクションモデルによる資源量推定 結果を用いた管理戦略評価・将来予測手法:ソウハチ・マガレイ北海道北部系群への 適用. FRA-SA2023-BRP03-101.
- Pedersen, M. W., & Berg, C. W. (2017) A stochastic surplus production model in continuous time. Fish and Fisheries, **18**, 226-243.



補足図 6-1. 将来予測用に再生成したパラメータセットの分布 2 つの基本モデルは、それぞれ 2 つの OM タイプに対応する。

補足図 6-2. 将来予測用に再生成したパラメータセットのフィルタリング結果 将来予測に用いたパラメータセット (赤) とフィルタリングで除外されたパラメータ セット (青) の形状パラメータ n と内的自然増加率 r の関係を示す。本資源の場合は全てのパラメータセットで資源崩壊には至らなかった。

調整係数βが0.8の場合の結果

補足図 6-3. 余剰生産モデルで推定されたパラメータと漁獲管理規則案に基づいて基本モデルごとに予測された将来の資源量、資源量と Bmsy の比、漁獲圧、漁獲圧と Fmsy の比、漁獲量および過程誤差

赤色の太い実線と網掛けは資源評価において Model 1 で推定されたパラメータから再生成した OM_{typel} 、青色の太い実線と網掛けは同様に Model 2 で推定されたパラメータから再生成した OM_{type2} による、推奨する漁獲管理規則案($\beta=0.8$)で漁獲した場合の予測された値の中央値と 90%区間。各色の細い線は反復計算の結果の例示である。黒破線を境に左が資源評価、右が将来予測に相当する。

補足資料 7 各種パラメータと評価結果の概要

補足表 7-1. 管理基準値案と MSY

項目	説明	本年度の資源評価に基づく値 (括弧内は90%信頼区間)		
目標管理基準値案 Btarget 案	最大持続生産量 MSY を実現する資源量 (Bmsy)	代表値: 2.9 千トン (1.8 千~4.2 千トン) Model 1: 2.7 千トン (1.7 千~4.2 千トン) Model 2: 3.2 千トン (2.3 千~4.5 千トン)		
限界管理基準値案 Blimit 案	資源評価で推定された 2021 年漁期以前の過去 最低資源量(Bmin)	代表値: 2.4 千トン (1.8 千~3.2 千トン) Model 1: 2.3 千トン (1.8 千~3.1 千トン) Model 2: 2.5 千トン (1.9 千~3.3 千トン)		
禁漁水準案 Bban 案 資源量 0トン		_		
Fmsy Bmsy を維持する漁獲圧		代表値: 0.93 (0.64~1.53) Model 1: 1.01 (0.64~1.61) Model 2: 0.85 (0.60~1.20)		
MSY	最大持続生産量 MSY	代表値: 2.7 千トン (2.6 千~2.9 千トン) Model 1: 2.7 千トン (2.6 千~2.9 千トン) Model 2: 2.7 千トン (2.6 千~2.9 千トン)		

補足表 7-2. 最新年の資源量と漁獲圧

項目	値 (90%信頼区間)	説明		
B2023	6.0 手トン	2023 年漁期の資源量		
	(4.6 千~8.0 千トン) 0.29	_		
F2023	$(0.22 \sim 0.38)$	2023 年漁期の漁獲圧		
管理基準値との比較				
B2023/ Bmsy	2.06 最大持続生産量を実現する資源量(目標管			
(Btarget 案)	(Btarget 案) (1.58~3.02) 基準値案) に対する 2023 年漁期の資			
E2022 / Emax	0.31	Bmsy を維持する漁獲圧に対する 2023 年漁期		
F2023/ Fmsy	(0.20~0.41)	の漁獲圧の比		
資源量の水準	MSY を実現する水準(Bmsy)を上回る			
漁獲圧の水準	Bmsy を維持する水準 (Fmsy)を下回る			
資源量の動向	横ばい			

補足表 7-3. 予測される算定漁獲量

2025 年漁期の予測資源量の代表値(90%区間):6.3 千トン(4.6 千~8.6 千トン)					
項目	2025 年漁期の 算定漁獲量 (千トン)	現状の漁獲圧に 対する比 (F/F2023)	2025 年漁期の 漁獲圧(F)		
管理基準値等に関する研究機関会議資料で提案された β(最高値)					
β=0.8	4.7	2.61	0.75		
上記と異なる β を使用した場合					
β=1.0	5.9	3.27	0.93		
β=0.9	5.3	2.94	0.84		
β=0.7	4.1	2.29	0.65		
β=0.6	3.5	1.96	0.56		
β=0.5	3.0	1.63	0.47		
F2023	1.8	1.00	0.29		

補足表 7-4. 異なる β を用いた将来予測結果

考慮している不確実性: 資源量の自然変動(過程誤差)、資源評価・ABC 計算プロセス						
項目	2035 年漁期の 予測資源量	90% 予測区間 (千トン)	2035 年漁期に資源量が以下の管理基準値案を上回る確率(%)			
	の代表値 (千トン)		Btarget 案	Blimit 案	Bban 案	
管理基準値等に関する研究機関会議資料で提案された β(最高値)						
β=0.8	3.5	1.9–5.4	79	92	100	
上記と異なる β を使用した場合						
β=1.0	3.0	1.3-5.2	57	73	100	
β=0.9	3.2	1.5-5.2	67	83	100	
β=0.7	4.0	2.5-5.8	91	98	100	
β=0.6	4.4	3.0-6.3	98	100	100	
β=0.5	5.0	3.5-7.0	100	100	100	
F2023	6.4	4.7–8.6	100	100	100	